| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mplassa | Structured version Visualization version GIF version | ||
| Description: The polynomial ring is an associative algebra. (Contributed by Mario Carneiro, 9-Jan-2015.) |
| Ref | Expression |
|---|---|
| mplgrp.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
| Ref | Expression |
|---|---|
| mplassa | ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ CRing) → 𝑃 ∈ AssAlg) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . 3 ⊢ (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅) | |
| 2 | mplgrp.p | . . 3 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
| 3 | eqid 2731 | . . 3 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
| 4 | simpl 482 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ CRing) → 𝐼 ∈ 𝑉) | |
| 5 | crngring 20158 | . . . 4 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
| 6 | 5 | adantl 481 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ CRing) → 𝑅 ∈ Ring) |
| 7 | 1, 2, 3, 4, 6 | mplsubrg 21937 | . 2 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ CRing) → (Base‘𝑃) ∈ (SubRing‘(𝐼 mPwSer 𝑅))) |
| 8 | 1, 2, 3, 4, 6 | mpllss 21935 | . 2 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ CRing) → (Base‘𝑃) ∈ (LSubSp‘(𝐼 mPwSer 𝑅))) |
| 9 | simpr 484 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ CRing) → 𝑅 ∈ CRing) | |
| 10 | 1, 4, 9 | psrassa 21905 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ CRing) → (𝐼 mPwSer 𝑅) ∈ AssAlg) |
| 11 | eqid 2731 | . . . . 5 ⊢ (1r‘(𝐼 mPwSer 𝑅)) = (1r‘(𝐼 mPwSer 𝑅)) | |
| 12 | 11 | subrg1cl 20490 | . . . 4 ⊢ ((Base‘𝑃) ∈ (SubRing‘(𝐼 mPwSer 𝑅)) → (1r‘(𝐼 mPwSer 𝑅)) ∈ (Base‘𝑃)) |
| 13 | 7, 12 | syl 17 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ CRing) → (1r‘(𝐼 mPwSer 𝑅)) ∈ (Base‘𝑃)) |
| 14 | eqid 2731 | . . . . 5 ⊢ (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑅)) | |
| 15 | 14 | subrgss 20482 | . . . 4 ⊢ ((Base‘𝑃) ∈ (SubRing‘(𝐼 mPwSer 𝑅)) → (Base‘𝑃) ⊆ (Base‘(𝐼 mPwSer 𝑅))) |
| 16 | 7, 15 | syl 17 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ CRing) → (Base‘𝑃) ⊆ (Base‘(𝐼 mPwSer 𝑅))) |
| 17 | 2, 1, 3 | mplval2 21928 | . . . 4 ⊢ 𝑃 = ((𝐼 mPwSer 𝑅) ↾s (Base‘𝑃)) |
| 18 | eqid 2731 | . . . 4 ⊢ (LSubSp‘(𝐼 mPwSer 𝑅)) = (LSubSp‘(𝐼 mPwSer 𝑅)) | |
| 19 | 17, 18, 14, 11 | issubassa 21799 | . . 3 ⊢ (((𝐼 mPwSer 𝑅) ∈ AssAlg ∧ (1r‘(𝐼 mPwSer 𝑅)) ∈ (Base‘𝑃) ∧ (Base‘𝑃) ⊆ (Base‘(𝐼 mPwSer 𝑅))) → (𝑃 ∈ AssAlg ↔ ((Base‘𝑃) ∈ (SubRing‘(𝐼 mPwSer 𝑅)) ∧ (Base‘𝑃) ∈ (LSubSp‘(𝐼 mPwSer 𝑅))))) |
| 20 | 10, 13, 16, 19 | syl3anc 1373 | . 2 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ CRing) → (𝑃 ∈ AssAlg ↔ ((Base‘𝑃) ∈ (SubRing‘(𝐼 mPwSer 𝑅)) ∧ (Base‘𝑃) ∈ (LSubSp‘(𝐼 mPwSer 𝑅))))) |
| 21 | 7, 8, 20 | mpbir2and 713 | 1 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ CRing) → 𝑃 ∈ AssAlg) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ⊆ wss 3897 ‘cfv 6476 (class class class)co 7341 Basecbs 17115 1rcur 20094 Ringcrg 20146 CRingccrg 20147 SubRingcsubrg 20479 LSubSpclss 20859 AssAlgcasa 21782 mPwSer cmps 21836 mPoly cmpl 21838 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-iin 4939 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-se 5565 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-isom 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7605 df-ofr 7606 df-om 7792 df-1st 7916 df-2nd 7917 df-supp 8086 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-er 8617 df-map 8747 df-pm 8748 df-ixp 8817 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-fsupp 9241 df-sup 9321 df-oi 9391 df-card 9827 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-n0 12377 df-z 12464 df-dec 12584 df-uz 12728 df-fz 13403 df-fzo 13550 df-seq 13904 df-hash 14233 df-struct 17053 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-ress 17137 df-plusg 17169 df-mulr 17170 df-sca 17172 df-vsca 17173 df-ip 17174 df-tset 17175 df-ple 17176 df-ds 17178 df-hom 17180 df-cco 17181 df-0g 17340 df-gsum 17341 df-prds 17346 df-pws 17348 df-mre 17483 df-mrc 17484 df-acs 17486 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-mhm 18686 df-submnd 18687 df-grp 18844 df-minusg 18845 df-sbg 18846 df-mulg 18976 df-subg 19031 df-ghm 19120 df-cntz 19224 df-cmn 19689 df-abl 19690 df-mgp 20054 df-rng 20066 df-ur 20095 df-ring 20148 df-cring 20149 df-subrng 20456 df-subrg 20480 df-lmod 20790 df-lss 20860 df-assa 21785 df-psr 21841 df-mpl 21843 |
| This theorem is referenced by: mplmon2mul 21999 mplind 22000 evlslem1 22012 mpfind 22037 pf1ind 22265 selvcllem1 42610 selvcllem2 42611 selvvvval 42618 evlselv 42620 |
| Copyright terms: Public domain | W3C validator |