MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz9.13g Structured version   Visualization version   GIF version

Theorem tz9.13g 9833
Description: Every set is well-founded, assuming the Axiom of Regularity. Proposition 9.13 of [TakeutiZaring] p. 78. This variant of tz9.13 9832 expresses the class existence requirement as an antecedent. (Contributed by NM, 4-Oct-2003.)
Assertion
Ref Expression
tz9.13g (𝐴𝑉 → ∃𝑥 ∈ On 𝐴 ∈ (𝑅1𝑥))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem tz9.13g
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eleq1 2828 . . 3 (𝑦 = 𝐴 → (𝑦 ∈ (𝑅1𝑥) ↔ 𝐴 ∈ (𝑅1𝑥)))
21rexbidv 3178 . 2 (𝑦 = 𝐴 → (∃𝑥 ∈ On 𝑦 ∈ (𝑅1𝑥) ↔ ∃𝑥 ∈ On 𝐴 ∈ (𝑅1𝑥)))
3 vex 3483 . . 3 𝑦 ∈ V
43tz9.13 9832 . 2 𝑥 ∈ On 𝑦 ∈ (𝑅1𝑥)
52, 4vtoclg 3553 1 (𝐴𝑉 → ∃𝑥 ∈ On 𝐴 ∈ (𝑅1𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  wrex 3069  Oncon0 6383  cfv 6560  𝑅1cr1 9803
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-reg 9633  ax-inf2 9682
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-ov 7435  df-om 7889  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-r1 9805
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator