MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz9.13g Structured version   Visualization version   GIF version

Theorem tz9.13g 9534
Description: Every set is well-founded, assuming the Axiom of Regularity. Proposition 9.13 of [TakeutiZaring] p. 78. This variant of tz9.13 9533 expresses the class existence requirement as an antecedent. (Contributed by NM, 4-Oct-2003.)
Assertion
Ref Expression
tz9.13g (𝐴𝑉 → ∃𝑥 ∈ On 𝐴 ∈ (𝑅1𝑥))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem tz9.13g
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eleq1 2827 . . 3 (𝑦 = 𝐴 → (𝑦 ∈ (𝑅1𝑥) ↔ 𝐴 ∈ (𝑅1𝑥)))
21rexbidv 3227 . 2 (𝑦 = 𝐴 → (∃𝑥 ∈ On 𝑦 ∈ (𝑅1𝑥) ↔ ∃𝑥 ∈ On 𝐴 ∈ (𝑅1𝑥)))
3 vex 3434 . . 3 𝑦 ∈ V
43tz9.13 9533 . 2 𝑥 ∈ On 𝑦 ∈ (𝑅1𝑥)
52, 4vtoclg 3503 1 (𝐴𝑉 → ∃𝑥 ∈ On 𝐴 ∈ (𝑅1𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2109  wrex 3066  Oncon0 6263  cfv 6430  𝑅1cr1 9504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-reg 9312  ax-inf2 9360
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-int 4885  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-ov 7271  df-om 7701  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-r1 9506
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator