| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > uobeq2 | Structured version Visualization version GIF version | ||
| Description: If a full functor (in fact, a full embedding) is a section, then the sets of universal objects are equal. (Contributed by Zhi Wang, 17-Nov-2025.) |
| Ref | Expression |
|---|---|
| uobeq2.b | ⊢ 𝐵 = (Base‘𝐷) |
| uobeq2.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| uobeq2.f | ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) |
| uobeq2.g | ⊢ (𝜑 → (𝐾 ∘func 𝐹) = 𝐺) |
| uobeq2.y | ⊢ (𝜑 → ((1st ‘𝐾)‘𝑋) = 𝑌) |
| uobeq2.q | ⊢ 𝑄 = (CatCat‘𝑈) |
| uobeq2.s | ⊢ 𝑆 = (Sect‘𝑄) |
| uobeq2.k | ⊢ (𝜑 → 𝐾 ∈ (𝐷 Full 𝐸)) |
| uobeq2.1 | ⊢ (𝜑 → 𝐾 ∈ dom (𝐷𝑆𝐸)) |
| Ref | Expression |
|---|---|
| uobeq2 | ⊢ (𝜑 → dom (𝐹(𝐶 UP 𝐷)𝑋) = dom (𝐺(𝐶 UP 𝐸)𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uobeq2.1 | . . 3 ⊢ (𝜑 → 𝐾 ∈ dom (𝐷𝑆𝐸)) | |
| 2 | eldmg 5870 | . . . 4 ⊢ (𝐾 ∈ dom (𝐷𝑆𝐸) → (𝐾 ∈ dom (𝐷𝑆𝐸) ↔ ∃𝑙 𝐾(𝐷𝑆𝐸)𝑙)) | |
| 3 | 2 | ibi 267 | . . 3 ⊢ (𝐾 ∈ dom (𝐷𝑆𝐸) → ∃𝑙 𝐾(𝐷𝑆𝐸)𝑙) |
| 4 | 1, 3 | syl 17 | . 2 ⊢ (𝜑 → ∃𝑙 𝐾(𝐷𝑆𝐸)𝑙) |
| 5 | uobeq2.b | . . 3 ⊢ 𝐵 = (Base‘𝐷) | |
| 6 | eqid 2730 | . . 3 ⊢ (idfunc‘𝐷) = (idfunc‘𝐷) | |
| 7 | uobeq2.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 8 | 7 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐾(𝐷𝑆𝐸)𝑙) → 𝑋 ∈ 𝐵) |
| 9 | uobeq2.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) | |
| 10 | 9 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐾(𝐷𝑆𝐸)𝑙) → 𝐹 ∈ (𝐶 Func 𝐷)) |
| 11 | uobeq2.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ (𝐷 Full 𝐸)) | |
| 12 | 11 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐾(𝐷𝑆𝐸)𝑙) → 𝐾 ∈ (𝐷 Full 𝐸)) |
| 13 | uobeq2.g | . . . 4 ⊢ (𝜑 → (𝐾 ∘func 𝐹) = 𝐺) | |
| 14 | 13 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐾(𝐷𝑆𝐸)𝑙) → (𝐾 ∘func 𝐹) = 𝐺) |
| 15 | uobeq2.y | . . . 4 ⊢ (𝜑 → ((1st ‘𝐾)‘𝑋) = 𝑌) | |
| 16 | 15 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐾(𝐷𝑆𝐸)𝑙) → ((1st ‘𝐾)‘𝑋) = 𝑌) |
| 17 | uobeq2.q | . . . . . 6 ⊢ 𝑄 = (CatCat‘𝑈) | |
| 18 | eqid 2730 | . . . . . 6 ⊢ (Hom ‘𝑄) = (Hom ‘𝑄) | |
| 19 | uobeq2.s | . . . . . 6 ⊢ 𝑆 = (Sect‘𝑄) | |
| 20 | 17, 18, 6, 19 | catcsect 49290 | . . . . 5 ⊢ (𝐾(𝐷𝑆𝐸)𝑙 ↔ ((𝐾 ∈ (𝐷(Hom ‘𝑄)𝐸) ∧ 𝑙 ∈ (𝐸(Hom ‘𝑄)𝐷)) ∧ (𝑙 ∘func 𝐾) = (idfunc‘𝐷))) |
| 21 | 20 | simprbi 496 | . . . 4 ⊢ (𝐾(𝐷𝑆𝐸)𝑙 → (𝑙 ∘func 𝐾) = (idfunc‘𝐷)) |
| 22 | 21 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝐾(𝐷𝑆𝐸)𝑙) → (𝑙 ∘func 𝐾) = (idfunc‘𝐷)) |
| 23 | 20 | simplbi 497 | . . . . . 6 ⊢ (𝐾(𝐷𝑆𝐸)𝑙 → (𝐾 ∈ (𝐷(Hom ‘𝑄)𝐸) ∧ 𝑙 ∈ (𝐸(Hom ‘𝑄)𝐷))) |
| 24 | 23 | simprd 495 | . . . . 5 ⊢ (𝐾(𝐷𝑆𝐸)𝑙 → 𝑙 ∈ (𝐸(Hom ‘𝑄)𝐷)) |
| 25 | 17, 18, 24 | elcatchom 49289 | . . . 4 ⊢ (𝐾(𝐷𝑆𝐸)𝑙 → 𝑙 ∈ (𝐸 Func 𝐷)) |
| 26 | 25 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝐾(𝐷𝑆𝐸)𝑙) → 𝑙 ∈ (𝐸 Func 𝐷)) |
| 27 | 5, 6, 8, 10, 12, 14, 16, 22, 26 | uobeq 49126 | . 2 ⊢ ((𝜑 ∧ 𝐾(𝐷𝑆𝐸)𝑙) → dom (𝐹(𝐶 UP 𝐷)𝑋) = dom (𝐺(𝐶 UP 𝐸)𝑌)) |
| 28 | 4, 27 | exlimddv 1935 | 1 ⊢ (𝜑 → dom (𝐹(𝐶 UP 𝐷)𝑋) = dom (𝐺(𝐶 UP 𝐸)𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 class class class wbr 5115 dom cdm 5646 ‘cfv 6519 (class class class)co 7394 1st c1st 7975 Basecbs 17185 Hom chom 17237 Sectcsect 17712 Func cfunc 17822 idfunccidfu 17823 ∘func ccofu 17824 Full cful 17872 CatCatccatc 18066 UP cup 49081 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-cnex 11142 ax-resscn 11143 ax-1cn 11144 ax-icn 11145 ax-addcl 11146 ax-addrcl 11147 ax-mulcl 11148 ax-mulrcl 11149 ax-mulcom 11150 ax-addass 11151 ax-mulass 11152 ax-distr 11153 ax-i2m1 11154 ax-1ne0 11155 ax-1rid 11156 ax-rnegex 11157 ax-rrecex 11158 ax-cnre 11159 ax-pre-lttri 11160 ax-pre-lttrn 11161 ax-pre-ltadd 11162 ax-pre-mulgt0 11163 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-nel 3032 df-ral 3047 df-rex 3056 df-rmo 3357 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-tp 4602 df-op 4604 df-uni 4880 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-om 7851 df-1st 7977 df-2nd 7978 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 df-1o 8443 df-er 8682 df-map 8805 df-ixp 8875 df-en 8923 df-dom 8924 df-sdom 8925 df-fin 8926 df-pnf 11228 df-mnf 11229 df-xr 11230 df-ltxr 11231 df-le 11232 df-sub 11425 df-neg 11426 df-nn 12198 df-2 12260 df-3 12261 df-4 12262 df-5 12263 df-6 12264 df-7 12265 df-8 12266 df-9 12267 df-n0 12459 df-z 12546 df-dec 12666 df-uz 12810 df-fz 13482 df-struct 17123 df-slot 17158 df-ndx 17170 df-base 17186 df-hom 17250 df-cco 17251 df-cat 17635 df-cid 17636 df-sect 17715 df-func 17826 df-idfu 17827 df-cofu 17828 df-full 17874 df-fth 17875 df-catc 18067 df-up 49082 |
| This theorem is referenced by: uobeq3 49294 |
| Copyright terms: Public domain | W3C validator |