MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzrest Structured version   Visualization version   GIF version

Theorem uzrest 23782
Description: The restriction of the set of upper sets of integers to an upper set of integers is the set of upper sets of integers based at a point above the cutoff. (Contributed by Mario Carneiro, 13-Oct-2015.)
Hypothesis
Ref Expression
uzfbas.1 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
uzrest (𝑀 ∈ ℤ → (ran ℤt 𝑍) = (ℤ𝑍))

Proof of Theorem uzrest
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zex 12480 . . . . . 6 ℤ ∈ V
21pwex 5319 . . . . 5 𝒫 ℤ ∈ V
3 uzf 12738 . . . . . 6 :ℤ⟶𝒫 ℤ
4 frn 6659 . . . . . 6 (ℤ:ℤ⟶𝒫 ℤ → ran ℤ ⊆ 𝒫 ℤ)
53, 4ax-mp 5 . . . . 5 ran ℤ ⊆ 𝒫 ℤ
62, 5ssexi 5261 . . . 4 ran ℤ ∈ V
7 uzfbas.1 . . . . 5 𝑍 = (ℤ𝑀)
87fvexi 6836 . . . 4 𝑍 ∈ V
9 restval 17330 . . . 4 ((ran ℤ ∈ V ∧ 𝑍 ∈ V) → (ran ℤt 𝑍) = ran (𝑥 ∈ ran ℤ ↦ (𝑥𝑍)))
106, 8, 9mp2an 692 . . 3 (ran ℤt 𝑍) = ran (𝑥 ∈ ran ℤ ↦ (𝑥𝑍))
117ineq2i 4168 . . . . . . . . 9 ((ℤ𝑦) ∩ 𝑍) = ((ℤ𝑦) ∩ (ℤ𝑀))
12 uzin 12775 . . . . . . . . . 10 ((𝑦 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((ℤ𝑦) ∩ (ℤ𝑀)) = (ℤ‘if(𝑦𝑀, 𝑀, 𝑦)))
1312ancoms 458 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((ℤ𝑦) ∩ (ℤ𝑀)) = (ℤ‘if(𝑦𝑀, 𝑀, 𝑦)))
1411, 13eqtrid 2776 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((ℤ𝑦) ∩ 𝑍) = (ℤ‘if(𝑦𝑀, 𝑀, 𝑦)))
15 ffn 6652 . . . . . . . . . 10 (ℤ:ℤ⟶𝒫 ℤ → ℤ Fn ℤ)
163, 15ax-mp 5 . . . . . . . . 9 Fn ℤ
17 uzssz 12756 . . . . . . . . . 10 (ℤ𝑀) ⊆ ℤ
187, 17eqsstri 3982 . . . . . . . . 9 𝑍 ⊆ ℤ
19 ifcl 4522 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℤ) → if(𝑦𝑀, 𝑀, 𝑦) ∈ ℤ)
20 uzid 12750 . . . . . . . . . . . 12 (if(𝑦𝑀, 𝑀, 𝑦) ∈ ℤ → if(𝑦𝑀, 𝑀, 𝑦) ∈ (ℤ‘if(𝑦𝑀, 𝑀, 𝑦)))
2119, 20syl 17 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℤ) → if(𝑦𝑀, 𝑀, 𝑦) ∈ (ℤ‘if(𝑦𝑀, 𝑀, 𝑦)))
2221, 14eleqtrrd 2831 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℤ) → if(𝑦𝑀, 𝑀, 𝑦) ∈ ((ℤ𝑦) ∩ 𝑍))
2322elin2d 4156 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℤ) → if(𝑦𝑀, 𝑀, 𝑦) ∈ 𝑍)
24 fnfvima 7169 . . . . . . . . 9 ((ℤ Fn ℤ ∧ 𝑍 ⊆ ℤ ∧ if(𝑦𝑀, 𝑀, 𝑦) ∈ 𝑍) → (ℤ‘if(𝑦𝑀, 𝑀, 𝑦)) ∈ (ℤ𝑍))
2516, 18, 23, 24mp3an12i 1467 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (ℤ‘if(𝑦𝑀, 𝑀, 𝑦)) ∈ (ℤ𝑍))
2614, 25eqeltrd 2828 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((ℤ𝑦) ∩ 𝑍) ∈ (ℤ𝑍))
2726ralrimiva 3121 . . . . . 6 (𝑀 ∈ ℤ → ∀𝑦 ∈ ℤ ((ℤ𝑦) ∩ 𝑍) ∈ (ℤ𝑍))
28 ineq1 4164 . . . . . . . . 9 (𝑥 = (ℤ𝑦) → (𝑥𝑍) = ((ℤ𝑦) ∩ 𝑍))
2928eleq1d 2813 . . . . . . . 8 (𝑥 = (ℤ𝑦) → ((𝑥𝑍) ∈ (ℤ𝑍) ↔ ((ℤ𝑦) ∩ 𝑍) ∈ (ℤ𝑍)))
3029ralrn 7022 . . . . . . 7 (ℤ Fn ℤ → (∀𝑥 ∈ ran ℤ(𝑥𝑍) ∈ (ℤ𝑍) ↔ ∀𝑦 ∈ ℤ ((ℤ𝑦) ∩ 𝑍) ∈ (ℤ𝑍)))
3116, 30ax-mp 5 . . . . . 6 (∀𝑥 ∈ ran ℤ(𝑥𝑍) ∈ (ℤ𝑍) ↔ ∀𝑦 ∈ ℤ ((ℤ𝑦) ∩ 𝑍) ∈ (ℤ𝑍))
3227, 31sylibr 234 . . . . 5 (𝑀 ∈ ℤ → ∀𝑥 ∈ ran ℤ(𝑥𝑍) ∈ (ℤ𝑍))
33 eqid 2729 . . . . . 6 (𝑥 ∈ ran ℤ ↦ (𝑥𝑍)) = (𝑥 ∈ ran ℤ ↦ (𝑥𝑍))
3433fmpt 7044 . . . . 5 (∀𝑥 ∈ ran ℤ(𝑥𝑍) ∈ (ℤ𝑍) ↔ (𝑥 ∈ ran ℤ ↦ (𝑥𝑍)):ran ℤ⟶(ℤ𝑍))
3532, 34sylib 218 . . . 4 (𝑀 ∈ ℤ → (𝑥 ∈ ran ℤ ↦ (𝑥𝑍)):ran ℤ⟶(ℤ𝑍))
3635frnd 6660 . . 3 (𝑀 ∈ ℤ → ran (𝑥 ∈ ran ℤ ↦ (𝑥𝑍)) ⊆ (ℤ𝑍))
3710, 36eqsstrid 3974 . 2 (𝑀 ∈ ℤ → (ran ℤt 𝑍) ⊆ (ℤ𝑍))
387uztrn2 12754 . . . . . . . . 9 ((𝑥𝑍𝑦 ∈ (ℤ𝑥)) → 𝑦𝑍)
3938ex 412 . . . . . . . 8 (𝑥𝑍 → (𝑦 ∈ (ℤ𝑥) → 𝑦𝑍))
4039ssrdv 3941 . . . . . . 7 (𝑥𝑍 → (ℤ𝑥) ⊆ 𝑍)
4140adantl 481 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑥𝑍) → (ℤ𝑥) ⊆ 𝑍)
42 dfss2 3921 . . . . . 6 ((ℤ𝑥) ⊆ 𝑍 ↔ ((ℤ𝑥) ∩ 𝑍) = (ℤ𝑥))
4341, 42sylib 218 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑥𝑍) → ((ℤ𝑥) ∩ 𝑍) = (ℤ𝑥))
4418sseli 3931 . . . . . . . 8 (𝑥𝑍𝑥 ∈ ℤ)
4544adantl 481 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑥𝑍) → 𝑥 ∈ ℤ)
46 fnfvelrn 7014 . . . . . . 7 ((ℤ Fn ℤ ∧ 𝑥 ∈ ℤ) → (ℤ𝑥) ∈ ran ℤ)
4716, 45, 46sylancr 587 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑥𝑍) → (ℤ𝑥) ∈ ran ℤ)
48 elrestr 17332 . . . . . 6 ((ran ℤ ∈ V ∧ 𝑍 ∈ V ∧ (ℤ𝑥) ∈ ran ℤ) → ((ℤ𝑥) ∩ 𝑍) ∈ (ran ℤt 𝑍))
496, 8, 47, 48mp3an12i 1467 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑥𝑍) → ((ℤ𝑥) ∩ 𝑍) ∈ (ran ℤt 𝑍))
5043, 49eqeltrrd 2829 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑥𝑍) → (ℤ𝑥) ∈ (ran ℤt 𝑍))
5150ralrimiva 3121 . . 3 (𝑀 ∈ ℤ → ∀𝑥𝑍 (ℤ𝑥) ∈ (ran ℤt 𝑍))
52 ffun 6655 . . . . 5 (ℤ:ℤ⟶𝒫 ℤ → Fun ℤ)
533, 52ax-mp 5 . . . 4 Fun ℤ
543fdmi 6663 . . . . 5 dom ℤ = ℤ
5518, 54sseqtrri 3985 . . . 4 𝑍 ⊆ dom ℤ
56 funimass4 6887 . . . 4 ((Fun ℤ𝑍 ⊆ dom ℤ) → ((ℤ𝑍) ⊆ (ran ℤt 𝑍) ↔ ∀𝑥𝑍 (ℤ𝑥) ∈ (ran ℤt 𝑍)))
5753, 55, 56mp2an 692 . . 3 ((ℤ𝑍) ⊆ (ran ℤt 𝑍) ↔ ∀𝑥𝑍 (ℤ𝑥) ∈ (ran ℤt 𝑍))
5851, 57sylibr 234 . 2 (𝑀 ∈ ℤ → (ℤ𝑍) ⊆ (ran ℤt 𝑍))
5937, 58eqssd 3953 1 (𝑀 ∈ ℤ → (ran ℤt 𝑍) = (ℤ𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  Vcvv 3436  cin 3902  wss 3903  ifcif 4476  𝒫 cpw 4551   class class class wbr 5092  cmpt 5173  dom cdm 5619  ran crn 5620  cima 5622  Fun wfun 6476   Fn wfn 6477  wf 6478  cfv 6482  (class class class)co 7349  cle 11150  cz 12471  cuz 12735  t crest 17324
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-pre-lttri 11083  ax-pre-lttrn 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-po 5527  df-so 5528  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-neg 11350  df-z 12472  df-uz 12736  df-rest 17326
This theorem is referenced by:  uzfbas  23783
  Copyright terms: Public domain W3C validator