MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzrest Structured version   Visualization version   GIF version

Theorem uzrest 22794
Description: The restriction of the set of upper sets of integers to an upper set of integers is the set of upper sets of integers based at a point above the cutoff. (Contributed by Mario Carneiro, 13-Oct-2015.)
Hypothesis
Ref Expression
uzfbas.1 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
uzrest (𝑀 ∈ ℤ → (ran ℤt 𝑍) = (ℤ𝑍))

Proof of Theorem uzrest
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zex 12185 . . . . . 6 ℤ ∈ V
21pwex 5273 . . . . 5 𝒫 ℤ ∈ V
3 uzf 12441 . . . . . 6 :ℤ⟶𝒫 ℤ
4 frn 6552 . . . . . 6 (ℤ:ℤ⟶𝒫 ℤ → ran ℤ ⊆ 𝒫 ℤ)
53, 4ax-mp 5 . . . . 5 ran ℤ ⊆ 𝒫 ℤ
62, 5ssexi 5215 . . . 4 ran ℤ ∈ V
7 uzfbas.1 . . . . 5 𝑍 = (ℤ𝑀)
87fvexi 6731 . . . 4 𝑍 ∈ V
9 restval 16931 . . . 4 ((ran ℤ ∈ V ∧ 𝑍 ∈ V) → (ran ℤt 𝑍) = ran (𝑥 ∈ ran ℤ ↦ (𝑥𝑍)))
106, 8, 9mp2an 692 . . 3 (ran ℤt 𝑍) = ran (𝑥 ∈ ran ℤ ↦ (𝑥𝑍))
117ineq2i 4124 . . . . . . . . 9 ((ℤ𝑦) ∩ 𝑍) = ((ℤ𝑦) ∩ (ℤ𝑀))
12 uzin 12474 . . . . . . . . . 10 ((𝑦 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((ℤ𝑦) ∩ (ℤ𝑀)) = (ℤ‘if(𝑦𝑀, 𝑀, 𝑦)))
1312ancoms 462 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((ℤ𝑦) ∩ (ℤ𝑀)) = (ℤ‘if(𝑦𝑀, 𝑀, 𝑦)))
1411, 13syl5eq 2790 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((ℤ𝑦) ∩ 𝑍) = (ℤ‘if(𝑦𝑀, 𝑀, 𝑦)))
15 ffn 6545 . . . . . . . . . 10 (ℤ:ℤ⟶𝒫 ℤ → ℤ Fn ℤ)
163, 15ax-mp 5 . . . . . . . . 9 Fn ℤ
17 uzssz 12459 . . . . . . . . . 10 (ℤ𝑀) ⊆ ℤ
187, 17eqsstri 3935 . . . . . . . . 9 𝑍 ⊆ ℤ
19 ifcl 4484 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℤ) → if(𝑦𝑀, 𝑀, 𝑦) ∈ ℤ)
20 uzid 12453 . . . . . . . . . . . 12 (if(𝑦𝑀, 𝑀, 𝑦) ∈ ℤ → if(𝑦𝑀, 𝑀, 𝑦) ∈ (ℤ‘if(𝑦𝑀, 𝑀, 𝑦)))
2119, 20syl 17 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℤ) → if(𝑦𝑀, 𝑀, 𝑦) ∈ (ℤ‘if(𝑦𝑀, 𝑀, 𝑦)))
2221, 14eleqtrrd 2841 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℤ) → if(𝑦𝑀, 𝑀, 𝑦) ∈ ((ℤ𝑦) ∩ 𝑍))
2322elin2d 4113 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℤ) → if(𝑦𝑀, 𝑀, 𝑦) ∈ 𝑍)
24 fnfvima 7049 . . . . . . . . 9 ((ℤ Fn ℤ ∧ 𝑍 ⊆ ℤ ∧ if(𝑦𝑀, 𝑀, 𝑦) ∈ 𝑍) → (ℤ‘if(𝑦𝑀, 𝑀, 𝑦)) ∈ (ℤ𝑍))
2516, 18, 23, 24mp3an12i 1467 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (ℤ‘if(𝑦𝑀, 𝑀, 𝑦)) ∈ (ℤ𝑍))
2614, 25eqeltrd 2838 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((ℤ𝑦) ∩ 𝑍) ∈ (ℤ𝑍))
2726ralrimiva 3105 . . . . . 6 (𝑀 ∈ ℤ → ∀𝑦 ∈ ℤ ((ℤ𝑦) ∩ 𝑍) ∈ (ℤ𝑍))
28 ineq1 4120 . . . . . . . . 9 (𝑥 = (ℤ𝑦) → (𝑥𝑍) = ((ℤ𝑦) ∩ 𝑍))
2928eleq1d 2822 . . . . . . . 8 (𝑥 = (ℤ𝑦) → ((𝑥𝑍) ∈ (ℤ𝑍) ↔ ((ℤ𝑦) ∩ 𝑍) ∈ (ℤ𝑍)))
3029ralrn 6907 . . . . . . 7 (ℤ Fn ℤ → (∀𝑥 ∈ ran ℤ(𝑥𝑍) ∈ (ℤ𝑍) ↔ ∀𝑦 ∈ ℤ ((ℤ𝑦) ∩ 𝑍) ∈ (ℤ𝑍)))
3116, 30ax-mp 5 . . . . . 6 (∀𝑥 ∈ ran ℤ(𝑥𝑍) ∈ (ℤ𝑍) ↔ ∀𝑦 ∈ ℤ ((ℤ𝑦) ∩ 𝑍) ∈ (ℤ𝑍))
3227, 31sylibr 237 . . . . 5 (𝑀 ∈ ℤ → ∀𝑥 ∈ ran ℤ(𝑥𝑍) ∈ (ℤ𝑍))
33 eqid 2737 . . . . . 6 (𝑥 ∈ ran ℤ ↦ (𝑥𝑍)) = (𝑥 ∈ ran ℤ ↦ (𝑥𝑍))
3433fmpt 6927 . . . . 5 (∀𝑥 ∈ ran ℤ(𝑥𝑍) ∈ (ℤ𝑍) ↔ (𝑥 ∈ ran ℤ ↦ (𝑥𝑍)):ran ℤ⟶(ℤ𝑍))
3532, 34sylib 221 . . . 4 (𝑀 ∈ ℤ → (𝑥 ∈ ran ℤ ↦ (𝑥𝑍)):ran ℤ⟶(ℤ𝑍))
3635frnd 6553 . . 3 (𝑀 ∈ ℤ → ran (𝑥 ∈ ran ℤ ↦ (𝑥𝑍)) ⊆ (ℤ𝑍))
3710, 36eqsstrid 3949 . 2 (𝑀 ∈ ℤ → (ran ℤt 𝑍) ⊆ (ℤ𝑍))
387uztrn2 12457 . . . . . . . . 9 ((𝑥𝑍𝑦 ∈ (ℤ𝑥)) → 𝑦𝑍)
3938ex 416 . . . . . . . 8 (𝑥𝑍 → (𝑦 ∈ (ℤ𝑥) → 𝑦𝑍))
4039ssrdv 3907 . . . . . . 7 (𝑥𝑍 → (ℤ𝑥) ⊆ 𝑍)
4140adantl 485 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑥𝑍) → (ℤ𝑥) ⊆ 𝑍)
42 df-ss 3883 . . . . . 6 ((ℤ𝑥) ⊆ 𝑍 ↔ ((ℤ𝑥) ∩ 𝑍) = (ℤ𝑥))
4341, 42sylib 221 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑥𝑍) → ((ℤ𝑥) ∩ 𝑍) = (ℤ𝑥))
4418sseli 3896 . . . . . . . 8 (𝑥𝑍𝑥 ∈ ℤ)
4544adantl 485 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑥𝑍) → 𝑥 ∈ ℤ)
46 fnfvelrn 6901 . . . . . . 7 ((ℤ Fn ℤ ∧ 𝑥 ∈ ℤ) → (ℤ𝑥) ∈ ran ℤ)
4716, 45, 46sylancr 590 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑥𝑍) → (ℤ𝑥) ∈ ran ℤ)
48 elrestr 16933 . . . . . 6 ((ran ℤ ∈ V ∧ 𝑍 ∈ V ∧ (ℤ𝑥) ∈ ran ℤ) → ((ℤ𝑥) ∩ 𝑍) ∈ (ran ℤt 𝑍))
496, 8, 47, 48mp3an12i 1467 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑥𝑍) → ((ℤ𝑥) ∩ 𝑍) ∈ (ran ℤt 𝑍))
5043, 49eqeltrrd 2839 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑥𝑍) → (ℤ𝑥) ∈ (ran ℤt 𝑍))
5150ralrimiva 3105 . . 3 (𝑀 ∈ ℤ → ∀𝑥𝑍 (ℤ𝑥) ∈ (ran ℤt 𝑍))
52 ffun 6548 . . . . 5 (ℤ:ℤ⟶𝒫 ℤ → Fun ℤ)
533, 52ax-mp 5 . . . 4 Fun ℤ
543fdmi 6557 . . . . 5 dom ℤ = ℤ
5518, 54sseqtrri 3938 . . . 4 𝑍 ⊆ dom ℤ
56 funimass4 6777 . . . 4 ((Fun ℤ𝑍 ⊆ dom ℤ) → ((ℤ𝑍) ⊆ (ran ℤt 𝑍) ↔ ∀𝑥𝑍 (ℤ𝑥) ∈ (ran ℤt 𝑍)))
5753, 55, 56mp2an 692 . . 3 ((ℤ𝑍) ⊆ (ran ℤt 𝑍) ↔ ∀𝑥𝑍 (ℤ𝑥) ∈ (ran ℤt 𝑍))
5851, 57sylibr 237 . 2 (𝑀 ∈ ℤ → (ℤ𝑍) ⊆ (ran ℤt 𝑍))
5937, 58eqssd 3918 1 (𝑀 ∈ ℤ → (ran ℤt 𝑍) = (ℤ𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2110  wral 3061  Vcvv 3408  cin 3865  wss 3866  ifcif 4439  𝒫 cpw 4513   class class class wbr 5053  cmpt 5135  dom cdm 5551  ran crn 5552  cima 5554  Fun wfun 6374   Fn wfn 6375  wf 6376  cfv 6380  (class class class)co 7213  cle 10868  cz 12176  cuz 12438  t crest 16925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-pre-lttri 10803  ax-pre-lttrn 10804
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-po 5468  df-so 5469  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-ov 7216  df-oprab 7217  df-mpo 7218  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-neg 11065  df-z 12177  df-uz 12439  df-rest 16927
This theorem is referenced by:  uzfbas  22795
  Copyright terms: Public domain W3C validator