MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrge0neqmnf Structured version   Visualization version   GIF version

Theorem xrge0neqmnf 12830
Description: A nonnegative extended real is not equal to minus infinity. (Contributed by Thierry Arnoux, 9-Jun-2017.) (Proof shortened by Glauco Siliprandi, 17-Aug-2020.)
Assertion
Ref Expression
xrge0neqmnf (𝐴 ∈ (0[,]+∞) → 𝐴 ≠ -∞)

Proof of Theorem xrge0neqmnf
StepHypRef Expression
1 eliccxr 12813 . 2 (𝐴 ∈ (0[,]+∞) → 𝐴 ∈ ℝ*)
2 0xr 10677 . . 3 0 ∈ ℝ*
3 pnfxr 10684 . . 3 +∞ ∈ ℝ*
4 iccgelb 12781 . . 3 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐴 ∈ (0[,]+∞)) → 0 ≤ 𝐴)
52, 3, 4mp3an12 1448 . 2 (𝐴 ∈ (0[,]+∞) → 0 ≤ 𝐴)
6 ge0nemnf 12554 . 2 ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → 𝐴 ≠ -∞)
71, 5, 6syl2anc 587 1 (𝐴 ∈ (0[,]+∞) → 𝐴 ≠ -∞)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  wne 2987   class class class wbr 5030  (class class class)co 7135  0cc0 10526  +∞cpnf 10661  -∞cmnf 10662  *cxr 10663  cle 10665  [,]cicc 12729
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-addrcl 10587  ax-rnegex 10597  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-po 5438  df-so 5439  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-1st 7671  df-2nd 7672  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-icc 12733
This theorem is referenced by:  xrge0nre  12831  xrge0adddir  30726  xrge0npcan  30728  hasheuni  31454  esumcvgre  31460  carsgclctunlem2  31687  sge0split  43048  sge0nemnf  43059
  Copyright terms: Public domain W3C validator