| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xrge0neqmnf | Structured version Visualization version GIF version | ||
| Description: A nonnegative extended real is not equal to minus infinity. (Contributed by Thierry Arnoux, 9-Jun-2017.) (Proof shortened by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| xrge0neqmnf | ⊢ (𝐴 ∈ (0[,]+∞) → 𝐴 ≠ -∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eliccxr 13402 | . 2 ⊢ (𝐴 ∈ (0[,]+∞) → 𝐴 ∈ ℝ*) | |
| 2 | 0xr 11227 | . . 3 ⊢ 0 ∈ ℝ* | |
| 3 | pnfxr 11234 | . . 3 ⊢ +∞ ∈ ℝ* | |
| 4 | iccgelb 13369 | . . 3 ⊢ ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝐴 ∈ (0[,]+∞)) → 0 ≤ 𝐴) | |
| 5 | 2, 3, 4 | mp3an12 1453 | . 2 ⊢ (𝐴 ∈ (0[,]+∞) → 0 ≤ 𝐴) |
| 6 | ge0nemnf 13139 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → 𝐴 ≠ -∞) | |
| 7 | 1, 5, 6 | syl2anc 584 | 1 ⊢ (𝐴 ∈ (0[,]+∞) → 𝐴 ≠ -∞) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ≠ wne 2926 class class class wbr 5109 (class class class)co 7389 0cc0 11074 +∞cpnf 11211 -∞cmnf 11212 ℝ*cxr 11213 ≤ cle 11215 [,]cicc 13315 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-addrcl 11135 ax-rnegex 11145 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-po 5548 df-so 5549 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-ov 7392 df-oprab 7393 df-mpo 7394 df-1st 7970 df-2nd 7971 df-er 8673 df-en 8921 df-dom 8922 df-sdom 8923 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-icc 13319 |
| This theorem is referenced by: xrge0nre 13420 xrge0adddir 32965 xrge0npcan 32967 hasheuni 34081 esumcvgre 34087 carsgclctunlem2 34316 sge0split 46400 sge0nemnf 46411 |
| Copyright terms: Public domain | W3C validator |