| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xrge0neqmnf | Structured version Visualization version GIF version | ||
| Description: A nonnegative extended real is not equal to minus infinity. (Contributed by Thierry Arnoux, 9-Jun-2017.) (Proof shortened by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| xrge0neqmnf | ⊢ (𝐴 ∈ (0[,]+∞) → 𝐴 ≠ -∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eliccxr 13338 | . 2 ⊢ (𝐴 ∈ (0[,]+∞) → 𝐴 ∈ ℝ*) | |
| 2 | 0xr 11162 | . . 3 ⊢ 0 ∈ ℝ* | |
| 3 | pnfxr 11169 | . . 3 ⊢ +∞ ∈ ℝ* | |
| 4 | iccgelb 13305 | . . 3 ⊢ ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝐴 ∈ (0[,]+∞)) → 0 ≤ 𝐴) | |
| 5 | 2, 3, 4 | mp3an12 1453 | . 2 ⊢ (𝐴 ∈ (0[,]+∞) → 0 ≤ 𝐴) |
| 6 | ge0nemnf 13075 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → 𝐴 ≠ -∞) | |
| 7 | 1, 5, 6 | syl2anc 584 | 1 ⊢ (𝐴 ∈ (0[,]+∞) → 𝐴 ≠ -∞) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ≠ wne 2925 class class class wbr 5092 (class class class)co 7349 0cc0 11009 +∞cpnf 11146 -∞cmnf 11147 ℝ*cxr 11148 ≤ cle 11150 [,]cicc 13251 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-addrcl 11070 ax-rnegex 11080 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-1st 7924 df-2nd 7925 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-icc 13255 |
| This theorem is referenced by: xrge0nre 13356 xrge0adddir 32972 xrge0npcan 32974 hasheuni 34052 esumcvgre 34058 carsgclctunlem2 34287 sge0split 46390 sge0nemnf 46401 |
| Copyright terms: Public domain | W3C validator |