![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xrge0neqmnf | Structured version Visualization version GIF version |
Description: A nonnegative extended real is not equal to minus infinity. (Contributed by Thierry Arnoux, 9-Jun-2017.) (Proof shortened by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
xrge0neqmnf | ⊢ (𝐴 ∈ (0[,]+∞) → 𝐴 ≠ -∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eliccxr 13481 | . 2 ⊢ (𝐴 ∈ (0[,]+∞) → 𝐴 ∈ ℝ*) | |
2 | 0xr 11315 | . . 3 ⊢ 0 ∈ ℝ* | |
3 | pnfxr 11322 | . . 3 ⊢ +∞ ∈ ℝ* | |
4 | iccgelb 13449 | . . 3 ⊢ ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝐴 ∈ (0[,]+∞)) → 0 ≤ 𝐴) | |
5 | 2, 3, 4 | mp3an12 1452 | . 2 ⊢ (𝐴 ∈ (0[,]+∞) → 0 ≤ 𝐴) |
6 | ge0nemnf 13221 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴) → 𝐴 ≠ -∞) | |
7 | 1, 5, 6 | syl2anc 584 | 1 ⊢ (𝐴 ∈ (0[,]+∞) → 𝐴 ≠ -∞) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ≠ wne 2940 class class class wbr 5151 (class class class)co 7438 0cc0 11162 +∞cpnf 11299 -∞cmnf 11300 ℝ*cxr 11301 ≤ cle 11303 [,]cicc 13396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-cnex 11218 ax-resscn 11219 ax-1cn 11220 ax-addrcl 11223 ax-rnegex 11233 ax-cnre 11235 ax-pre-lttri 11236 ax-pre-lttrn 11237 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-po 5601 df-so 5602 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-ov 7441 df-oprab 7442 df-mpo 7443 df-1st 8022 df-2nd 8023 df-er 8753 df-en 8994 df-dom 8995 df-sdom 8996 df-pnf 11304 df-mnf 11305 df-xr 11306 df-ltxr 11307 df-le 11308 df-icc 13400 |
This theorem is referenced by: xrge0nre 13499 xrge0adddir 33038 xrge0npcan 33040 hasheuni 34080 esumcvgre 34086 carsgclctunlem2 34315 sge0split 46393 sge0nemnf 46404 |
Copyright terms: Public domain | W3C validator |