Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ismbl3 Structured version   Visualization version   GIF version

Theorem ismbl3 44317
Description: The predicate "𝐴 is Lebesgue-measurable". Similar to ismbl2 24914, but here +𝑒 is used, and the precondition (vol*‘𝑥) ∈ ℝ can be dropped. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Assertion
Ref Expression
ismbl3 (𝐴 ∈ dom vol ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥)))
Distinct variable group:   𝑥,𝐴

Proof of Theorem ismbl3
StepHypRef Expression
1 ismbl2 24914 . 2 (𝐴 ∈ dom vol ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥))))
2 inss1 4192 . . . . . . . . . . . 12 (𝑥𝐴) ⊆ 𝑥
32a1i 11 . . . . . . . . . . 11 ((𝑥 ∈ 𝒫 ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (𝑥𝐴) ⊆ 𝑥)
4 elpwi 4571 . . . . . . . . . . . 12 (𝑥 ∈ 𝒫 ℝ → 𝑥 ⊆ ℝ)
54adantr 482 . . . . . . . . . . 11 ((𝑥 ∈ 𝒫 ℝ ∧ (vol*‘𝑥) ∈ ℝ) → 𝑥 ⊆ ℝ)
6 simpr 486 . . . . . . . . . . 11 ((𝑥 ∈ 𝒫 ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘𝑥) ∈ ℝ)
7 ovolsscl 24873 . . . . . . . . . . 11 (((𝑥𝐴) ⊆ 𝑥𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥𝐴)) ∈ ℝ)
83, 5, 6, 7syl3anc 1372 . . . . . . . . . 10 ((𝑥 ∈ 𝒫 ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥𝐴)) ∈ ℝ)
9 difssd 4096 . . . . . . . . . . 11 ((𝑥 ∈ 𝒫 ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (𝑥𝐴) ⊆ 𝑥)
10 ovolsscl 24873 . . . . . . . . . . 11 (((𝑥𝐴) ⊆ 𝑥𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥𝐴)) ∈ ℝ)
119, 5, 6, 10syl3anc 1372 . . . . . . . . . 10 ((𝑥 ∈ 𝒫 ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥𝐴)) ∈ ℝ)
128, 11rexaddd 13162 . . . . . . . . 9 ((𝑥 ∈ 𝒫 ℝ ∧ (vol*‘𝑥) ∈ ℝ) → ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))))
1312adantlr 714 . . . . . . . 8 (((𝑥 ∈ 𝒫 ℝ ∧ ((vol*‘𝑥) ∈ ℝ → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥))) ∧ (vol*‘𝑥) ∈ ℝ) → ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))))
14 id 22 . . . . . . . . . 10 (((vol*‘𝑥) ∈ ℝ → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥)) → ((vol*‘𝑥) ∈ ℝ → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥)))
1514imp 408 . . . . . . . . 9 ((((vol*‘𝑥) ∈ ℝ → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥)) ∧ (vol*‘𝑥) ∈ ℝ) → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥))
1615adantll 713 . . . . . . . 8 (((𝑥 ∈ 𝒫 ℝ ∧ ((vol*‘𝑥) ∈ ℝ → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥))) ∧ (vol*‘𝑥) ∈ ℝ) → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥))
1713, 16eqbrtrd 5131 . . . . . . 7 (((𝑥 ∈ 𝒫 ℝ ∧ ((vol*‘𝑥) ∈ ℝ → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥))) ∧ (vol*‘𝑥) ∈ ℝ) → ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥))
182, 4sstrid 3959 . . . . . . . . . . . . 13 (𝑥 ∈ 𝒫 ℝ → (𝑥𝐴) ⊆ ℝ)
19 ovolcl 24865 . . . . . . . . . . . . 13 ((𝑥𝐴) ⊆ ℝ → (vol*‘(𝑥𝐴)) ∈ ℝ*)
2018, 19syl 17 . . . . . . . . . . . 12 (𝑥 ∈ 𝒫 ℝ → (vol*‘(𝑥𝐴)) ∈ ℝ*)
214ssdifssd 4106 . . . . . . . . . . . . 13 (𝑥 ∈ 𝒫 ℝ → (𝑥𝐴) ⊆ ℝ)
22 ovolcl 24865 . . . . . . . . . . . . 13 ((𝑥𝐴) ⊆ ℝ → (vol*‘(𝑥𝐴)) ∈ ℝ*)
2321, 22syl 17 . . . . . . . . . . . 12 (𝑥 ∈ 𝒫 ℝ → (vol*‘(𝑥𝐴)) ∈ ℝ*)
2420, 23xaddcld 13229 . . . . . . . . . . 11 (𝑥 ∈ 𝒫 ℝ → ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ∈ ℝ*)
25 pnfge 13059 . . . . . . . . . . 11 (((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ∈ ℝ* → ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ +∞)
2624, 25syl 17 . . . . . . . . . 10 (𝑥 ∈ 𝒫 ℝ → ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ +∞)
2726adantr 482 . . . . . . . . 9 ((𝑥 ∈ 𝒫 ℝ ∧ ¬ (vol*‘𝑥) ∈ ℝ) → ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ +∞)
28 ovolf 24869 . . . . . . . . . . . . 13 vol*:𝒫 ℝ⟶(0[,]+∞)
2928ffvelcdmi 7038 . . . . . . . . . . . 12 (𝑥 ∈ 𝒫 ℝ → (vol*‘𝑥) ∈ (0[,]+∞))
3029adantr 482 . . . . . . . . . . 11 ((𝑥 ∈ 𝒫 ℝ ∧ ¬ (vol*‘𝑥) ∈ ℝ) → (vol*‘𝑥) ∈ (0[,]+∞))
31 simpr 486 . . . . . . . . . . 11 ((𝑥 ∈ 𝒫 ℝ ∧ ¬ (vol*‘𝑥) ∈ ℝ) → ¬ (vol*‘𝑥) ∈ ℝ)
32 xrge0nre 13379 . . . . . . . . . . 11 (((vol*‘𝑥) ∈ (0[,]+∞) ∧ ¬ (vol*‘𝑥) ∈ ℝ) → (vol*‘𝑥) = +∞)
3330, 31, 32syl2anc 585 . . . . . . . . . 10 ((𝑥 ∈ 𝒫 ℝ ∧ ¬ (vol*‘𝑥) ∈ ℝ) → (vol*‘𝑥) = +∞)
3433eqcomd 2739 . . . . . . . . 9 ((𝑥 ∈ 𝒫 ℝ ∧ ¬ (vol*‘𝑥) ∈ ℝ) → +∞ = (vol*‘𝑥))
3527, 34breqtrd 5135 . . . . . . . 8 ((𝑥 ∈ 𝒫 ℝ ∧ ¬ (vol*‘𝑥) ∈ ℝ) → ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥))
3635adantlr 714 . . . . . . 7 (((𝑥 ∈ 𝒫 ℝ ∧ ((vol*‘𝑥) ∈ ℝ → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥))) ∧ ¬ (vol*‘𝑥) ∈ ℝ) → ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥))
3717, 36pm2.61dan 812 . . . . . 6 ((𝑥 ∈ 𝒫 ℝ ∧ ((vol*‘𝑥) ∈ ℝ → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥))) → ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥))
3837ex 414 . . . . 5 (𝑥 ∈ 𝒫 ℝ → (((vol*‘𝑥) ∈ ℝ → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥)) → ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥)))
3912eqcomd 2739 . . . . . . . 8 ((𝑥 ∈ 𝒫 ℝ ∧ (vol*‘𝑥) ∈ ℝ) → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) = ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))))
40393adant2 1132 . . . . . . 7 ((𝑥 ∈ 𝒫 ℝ ∧ ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥) ∧ (vol*‘𝑥) ∈ ℝ) → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) = ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))))
41 simp2 1138 . . . . . . 7 ((𝑥 ∈ 𝒫 ℝ ∧ ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥) ∧ (vol*‘𝑥) ∈ ℝ) → ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥))
4240, 41eqbrtrd 5131 . . . . . 6 ((𝑥 ∈ 𝒫 ℝ ∧ ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥) ∧ (vol*‘𝑥) ∈ ℝ) → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥))
43423exp 1120 . . . . 5 (𝑥 ∈ 𝒫 ℝ → (((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥) → ((vol*‘𝑥) ∈ ℝ → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥))))
4438, 43impbid 211 . . . 4 (𝑥 ∈ 𝒫 ℝ → (((vol*‘𝑥) ∈ ℝ → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥)) ↔ ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥)))
4544ralbiia 3091 . . 3 (∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥)) ↔ ∀𝑥 ∈ 𝒫 ℝ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥))
4645anbi2i 624 . 2 ((𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥))) ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥)))
471, 46bitri 275 1 (𝐴 ∈ dom vol ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  wral 3061  cdif 3911  cin 3913  wss 3914  𝒫 cpw 4564   class class class wbr 5109  dom cdm 5637  cfv 6500  (class class class)co 7361  cr 11058  0cc0 11059   + caddc 11062  +∞cpnf 11194  *cxr 11196  cle 11198   +𝑒 cxad 13039  [,]cicc 13276  vol*covol 24849  volcvol 24850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676  ax-cnex 11115  ax-resscn 11116  ax-1cn 11117  ax-icn 11118  ax-addcl 11119  ax-addrcl 11120  ax-mulcl 11121  ax-mulrcl 11122  ax-mulcom 11123  ax-addass 11124  ax-mulass 11125  ax-distr 11126  ax-i2m1 11127  ax-1ne0 11128  ax-1rid 11129  ax-rnegex 11130  ax-rrecex 11131  ax-cnre 11132  ax-pre-lttri 11133  ax-pre-lttrn 11134  ax-pre-ltadd 11135  ax-pre-mulgt0 11136  ax-pre-sup 11137
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3933  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-iun 4960  df-br 5110  df-opab 5172  df-mpt 5193  df-tr 5227  df-id 5535  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5592  df-we 5594  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-pred 6257  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-riota 7317  df-ov 7364  df-oprab 7365  df-mpo 7366  df-om 7807  df-1st 7925  df-2nd 7926  df-frecs 8216  df-wrecs 8247  df-recs 8321  df-rdg 8360  df-er 8654  df-map 8773  df-en 8890  df-dom 8891  df-sdom 8892  df-sup 9386  df-inf 9387  df-pnf 11199  df-mnf 11200  df-xr 11201  df-ltxr 11202  df-le 11203  df-sub 11395  df-neg 11396  df-div 11821  df-nn 12162  df-2 12224  df-3 12225  df-n0 12422  df-z 12508  df-uz 12772  df-q 12882  df-rp 12924  df-xadd 13042  df-ioo 13277  df-ico 13279  df-icc 13280  df-fz 13434  df-fl 13706  df-seq 13916  df-exp 13977  df-cj 14993  df-re 14994  df-im 14995  df-sqrt 15129  df-abs 15130  df-ovol 24851  df-vol 24852
This theorem is referenced by:  ismbl4  44324
  Copyright terms: Public domain W3C validator