Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ismbl3 Structured version   Visualization version   GIF version

Theorem ismbl3 45907
Description: The predicate "𝐴 is Lebesgue-measurable". Similar to ismbl2 25581, but here +𝑒 is used, and the precondition (vol*‘𝑥) ∈ ℝ can be dropped. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Assertion
Ref Expression
ismbl3 (𝐴 ∈ dom vol ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥)))
Distinct variable group:   𝑥,𝐴

Proof of Theorem ismbl3
StepHypRef Expression
1 ismbl2 25581 . 2 (𝐴 ∈ dom vol ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥))))
2 inss1 4258 . . . . . . . . . . . 12 (𝑥𝐴) ⊆ 𝑥
32a1i 11 . . . . . . . . . . 11 ((𝑥 ∈ 𝒫 ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (𝑥𝐴) ⊆ 𝑥)
4 elpwi 4629 . . . . . . . . . . . 12 (𝑥 ∈ 𝒫 ℝ → 𝑥 ⊆ ℝ)
54adantr 480 . . . . . . . . . . 11 ((𝑥 ∈ 𝒫 ℝ ∧ (vol*‘𝑥) ∈ ℝ) → 𝑥 ⊆ ℝ)
6 simpr 484 . . . . . . . . . . 11 ((𝑥 ∈ 𝒫 ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘𝑥) ∈ ℝ)
7 ovolsscl 25540 . . . . . . . . . . 11 (((𝑥𝐴) ⊆ 𝑥𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥𝐴)) ∈ ℝ)
83, 5, 6, 7syl3anc 1371 . . . . . . . . . 10 ((𝑥 ∈ 𝒫 ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥𝐴)) ∈ ℝ)
9 difssd 4160 . . . . . . . . . . 11 ((𝑥 ∈ 𝒫 ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (𝑥𝐴) ⊆ 𝑥)
10 ovolsscl 25540 . . . . . . . . . . 11 (((𝑥𝐴) ⊆ 𝑥𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥𝐴)) ∈ ℝ)
119, 5, 6, 10syl3anc 1371 . . . . . . . . . 10 ((𝑥 ∈ 𝒫 ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥𝐴)) ∈ ℝ)
128, 11rexaddd 13296 . . . . . . . . 9 ((𝑥 ∈ 𝒫 ℝ ∧ (vol*‘𝑥) ∈ ℝ) → ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))))
1312adantlr 714 . . . . . . . 8 (((𝑥 ∈ 𝒫 ℝ ∧ ((vol*‘𝑥) ∈ ℝ → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥))) ∧ (vol*‘𝑥) ∈ ℝ) → ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))))
14 id 22 . . . . . . . . . 10 (((vol*‘𝑥) ∈ ℝ → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥)) → ((vol*‘𝑥) ∈ ℝ → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥)))
1514imp 406 . . . . . . . . 9 ((((vol*‘𝑥) ∈ ℝ → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥)) ∧ (vol*‘𝑥) ∈ ℝ) → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥))
1615adantll 713 . . . . . . . 8 (((𝑥 ∈ 𝒫 ℝ ∧ ((vol*‘𝑥) ∈ ℝ → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥))) ∧ (vol*‘𝑥) ∈ ℝ) → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥))
1713, 16eqbrtrd 5188 . . . . . . 7 (((𝑥 ∈ 𝒫 ℝ ∧ ((vol*‘𝑥) ∈ ℝ → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥))) ∧ (vol*‘𝑥) ∈ ℝ) → ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥))
182, 4sstrid 4020 . . . . . . . . . . . . 13 (𝑥 ∈ 𝒫 ℝ → (𝑥𝐴) ⊆ ℝ)
19 ovolcl 25532 . . . . . . . . . . . . 13 ((𝑥𝐴) ⊆ ℝ → (vol*‘(𝑥𝐴)) ∈ ℝ*)
2018, 19syl 17 . . . . . . . . . . . 12 (𝑥 ∈ 𝒫 ℝ → (vol*‘(𝑥𝐴)) ∈ ℝ*)
214ssdifssd 4170 . . . . . . . . . . . . 13 (𝑥 ∈ 𝒫 ℝ → (𝑥𝐴) ⊆ ℝ)
22 ovolcl 25532 . . . . . . . . . . . . 13 ((𝑥𝐴) ⊆ ℝ → (vol*‘(𝑥𝐴)) ∈ ℝ*)
2321, 22syl 17 . . . . . . . . . . . 12 (𝑥 ∈ 𝒫 ℝ → (vol*‘(𝑥𝐴)) ∈ ℝ*)
2420, 23xaddcld 13363 . . . . . . . . . . 11 (𝑥 ∈ 𝒫 ℝ → ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ∈ ℝ*)
25 pnfge 13193 . . . . . . . . . . 11 (((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ∈ ℝ* → ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ +∞)
2624, 25syl 17 . . . . . . . . . 10 (𝑥 ∈ 𝒫 ℝ → ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ +∞)
2726adantr 480 . . . . . . . . 9 ((𝑥 ∈ 𝒫 ℝ ∧ ¬ (vol*‘𝑥) ∈ ℝ) → ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ +∞)
28 ovolf 25536 . . . . . . . . . . . . 13 vol*:𝒫 ℝ⟶(0[,]+∞)
2928ffvelcdmi 7117 . . . . . . . . . . . 12 (𝑥 ∈ 𝒫 ℝ → (vol*‘𝑥) ∈ (0[,]+∞))
3029adantr 480 . . . . . . . . . . 11 ((𝑥 ∈ 𝒫 ℝ ∧ ¬ (vol*‘𝑥) ∈ ℝ) → (vol*‘𝑥) ∈ (0[,]+∞))
31 simpr 484 . . . . . . . . . . 11 ((𝑥 ∈ 𝒫 ℝ ∧ ¬ (vol*‘𝑥) ∈ ℝ) → ¬ (vol*‘𝑥) ∈ ℝ)
32 xrge0nre 13513 . . . . . . . . . . 11 (((vol*‘𝑥) ∈ (0[,]+∞) ∧ ¬ (vol*‘𝑥) ∈ ℝ) → (vol*‘𝑥) = +∞)
3330, 31, 32syl2anc 583 . . . . . . . . . 10 ((𝑥 ∈ 𝒫 ℝ ∧ ¬ (vol*‘𝑥) ∈ ℝ) → (vol*‘𝑥) = +∞)
3433eqcomd 2746 . . . . . . . . 9 ((𝑥 ∈ 𝒫 ℝ ∧ ¬ (vol*‘𝑥) ∈ ℝ) → +∞ = (vol*‘𝑥))
3527, 34breqtrd 5192 . . . . . . . 8 ((𝑥 ∈ 𝒫 ℝ ∧ ¬ (vol*‘𝑥) ∈ ℝ) → ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥))
3635adantlr 714 . . . . . . 7 (((𝑥 ∈ 𝒫 ℝ ∧ ((vol*‘𝑥) ∈ ℝ → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥))) ∧ ¬ (vol*‘𝑥) ∈ ℝ) → ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥))
3717, 36pm2.61dan 812 . . . . . 6 ((𝑥 ∈ 𝒫 ℝ ∧ ((vol*‘𝑥) ∈ ℝ → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥))) → ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥))
3837ex 412 . . . . 5 (𝑥 ∈ 𝒫 ℝ → (((vol*‘𝑥) ∈ ℝ → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥)) → ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥)))
3912eqcomd 2746 . . . . . . . 8 ((𝑥 ∈ 𝒫 ℝ ∧ (vol*‘𝑥) ∈ ℝ) → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) = ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))))
40393adant2 1131 . . . . . . 7 ((𝑥 ∈ 𝒫 ℝ ∧ ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥) ∧ (vol*‘𝑥) ∈ ℝ) → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) = ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))))
41 simp2 1137 . . . . . . 7 ((𝑥 ∈ 𝒫 ℝ ∧ ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥) ∧ (vol*‘𝑥) ∈ ℝ) → ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥))
4240, 41eqbrtrd 5188 . . . . . 6 ((𝑥 ∈ 𝒫 ℝ ∧ ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥) ∧ (vol*‘𝑥) ∈ ℝ) → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥))
43423exp 1119 . . . . 5 (𝑥 ∈ 𝒫 ℝ → (((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥) → ((vol*‘𝑥) ∈ ℝ → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥))))
4438, 43impbid 212 . . . 4 (𝑥 ∈ 𝒫 ℝ → (((vol*‘𝑥) ∈ ℝ → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥)) ↔ ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥)))
4544ralbiia 3097 . . 3 (∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥)) ↔ ∀𝑥 ∈ 𝒫 ℝ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥))
4645anbi2i 622 . 2 ((𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥))) ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥)))
471, 46bitri 275 1 (𝐴 ∈ dom vol ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  cdif 3973  cin 3975  wss 3976  𝒫 cpw 4622   class class class wbr 5166  dom cdm 5700  cfv 6573  (class class class)co 7448  cr 11183  0cc0 11184   + caddc 11187  +∞cpnf 11321  *cxr 11323  cle 11325   +𝑒 cxad 13173  [,]cicc 13410  vol*covol 25516  volcvol 25517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-q 13014  df-rp 13058  df-xadd 13176  df-ioo 13411  df-ico 13413  df-icc 13414  df-fz 13568  df-fl 13843  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-ovol 25518  df-vol 25519
This theorem is referenced by:  ismbl4  45914
  Copyright terms: Public domain W3C validator