Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ismbl3 Structured version   Visualization version   GIF version

Theorem ismbl3 43771
Description: The predicate "𝐴 is Lebesgue-measurable". Similar to ismbl2 24762, but here +𝑒 is used, and the precondition (vol*‘𝑥) ∈ ℝ can be dropped. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Assertion
Ref Expression
ismbl3 (𝐴 ∈ dom vol ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥)))
Distinct variable group:   𝑥,𝐴

Proof of Theorem ismbl3
StepHypRef Expression
1 ismbl2 24762 . 2 (𝐴 ∈ dom vol ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥))))
2 inss1 4172 . . . . . . . . . . . 12 (𝑥𝐴) ⊆ 𝑥
32a1i 11 . . . . . . . . . . 11 ((𝑥 ∈ 𝒫 ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (𝑥𝐴) ⊆ 𝑥)
4 elpwi 4550 . . . . . . . . . . . 12 (𝑥 ∈ 𝒫 ℝ → 𝑥 ⊆ ℝ)
54adantr 481 . . . . . . . . . . 11 ((𝑥 ∈ 𝒫 ℝ ∧ (vol*‘𝑥) ∈ ℝ) → 𝑥 ⊆ ℝ)
6 simpr 485 . . . . . . . . . . 11 ((𝑥 ∈ 𝒫 ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘𝑥) ∈ ℝ)
7 ovolsscl 24721 . . . . . . . . . . 11 (((𝑥𝐴) ⊆ 𝑥𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥𝐴)) ∈ ℝ)
83, 5, 6, 7syl3anc 1370 . . . . . . . . . 10 ((𝑥 ∈ 𝒫 ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥𝐴)) ∈ ℝ)
9 difssd 4077 . . . . . . . . . . 11 ((𝑥 ∈ 𝒫 ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (𝑥𝐴) ⊆ 𝑥)
10 ovolsscl 24721 . . . . . . . . . . 11 (((𝑥𝐴) ⊆ 𝑥𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥𝐴)) ∈ ℝ)
119, 5, 6, 10syl3anc 1370 . . . . . . . . . 10 ((𝑥 ∈ 𝒫 ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥𝐴)) ∈ ℝ)
128, 11rexaddd 13038 . . . . . . . . 9 ((𝑥 ∈ 𝒫 ℝ ∧ (vol*‘𝑥) ∈ ℝ) → ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))))
1312adantlr 712 . . . . . . . 8 (((𝑥 ∈ 𝒫 ℝ ∧ ((vol*‘𝑥) ∈ ℝ → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥))) ∧ (vol*‘𝑥) ∈ ℝ) → ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))))
14 id 22 . . . . . . . . . 10 (((vol*‘𝑥) ∈ ℝ → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥)) → ((vol*‘𝑥) ∈ ℝ → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥)))
1514imp 407 . . . . . . . . 9 ((((vol*‘𝑥) ∈ ℝ → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥)) ∧ (vol*‘𝑥) ∈ ℝ) → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥))
1615adantll 711 . . . . . . . 8 (((𝑥 ∈ 𝒫 ℝ ∧ ((vol*‘𝑥) ∈ ℝ → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥))) ∧ (vol*‘𝑥) ∈ ℝ) → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥))
1713, 16eqbrtrd 5107 . . . . . . 7 (((𝑥 ∈ 𝒫 ℝ ∧ ((vol*‘𝑥) ∈ ℝ → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥))) ∧ (vol*‘𝑥) ∈ ℝ) → ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥))
182, 4sstrid 3941 . . . . . . . . . . . . 13 (𝑥 ∈ 𝒫 ℝ → (𝑥𝐴) ⊆ ℝ)
19 ovolcl 24713 . . . . . . . . . . . . 13 ((𝑥𝐴) ⊆ ℝ → (vol*‘(𝑥𝐴)) ∈ ℝ*)
2018, 19syl 17 . . . . . . . . . . . 12 (𝑥 ∈ 𝒫 ℝ → (vol*‘(𝑥𝐴)) ∈ ℝ*)
214ssdifssd 4087 . . . . . . . . . . . . 13 (𝑥 ∈ 𝒫 ℝ → (𝑥𝐴) ⊆ ℝ)
22 ovolcl 24713 . . . . . . . . . . . . 13 ((𝑥𝐴) ⊆ ℝ → (vol*‘(𝑥𝐴)) ∈ ℝ*)
2321, 22syl 17 . . . . . . . . . . . 12 (𝑥 ∈ 𝒫 ℝ → (vol*‘(𝑥𝐴)) ∈ ℝ*)
2420, 23xaddcld 13105 . . . . . . . . . . 11 (𝑥 ∈ 𝒫 ℝ → ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ∈ ℝ*)
25 pnfge 12936 . . . . . . . . . . 11 (((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ∈ ℝ* → ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ +∞)
2624, 25syl 17 . . . . . . . . . 10 (𝑥 ∈ 𝒫 ℝ → ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ +∞)
2726adantr 481 . . . . . . . . 9 ((𝑥 ∈ 𝒫 ℝ ∧ ¬ (vol*‘𝑥) ∈ ℝ) → ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ +∞)
28 ovolf 24717 . . . . . . . . . . . . 13 vol*:𝒫 ℝ⟶(0[,]+∞)
2928ffvelcdmi 6997 . . . . . . . . . . . 12 (𝑥 ∈ 𝒫 ℝ → (vol*‘𝑥) ∈ (0[,]+∞))
3029adantr 481 . . . . . . . . . . 11 ((𝑥 ∈ 𝒫 ℝ ∧ ¬ (vol*‘𝑥) ∈ ℝ) → (vol*‘𝑥) ∈ (0[,]+∞))
31 simpr 485 . . . . . . . . . . 11 ((𝑥 ∈ 𝒫 ℝ ∧ ¬ (vol*‘𝑥) ∈ ℝ) → ¬ (vol*‘𝑥) ∈ ℝ)
32 xrge0nre 13255 . . . . . . . . . . 11 (((vol*‘𝑥) ∈ (0[,]+∞) ∧ ¬ (vol*‘𝑥) ∈ ℝ) → (vol*‘𝑥) = +∞)
3330, 31, 32syl2anc 584 . . . . . . . . . 10 ((𝑥 ∈ 𝒫 ℝ ∧ ¬ (vol*‘𝑥) ∈ ℝ) → (vol*‘𝑥) = +∞)
3433eqcomd 2743 . . . . . . . . 9 ((𝑥 ∈ 𝒫 ℝ ∧ ¬ (vol*‘𝑥) ∈ ℝ) → +∞ = (vol*‘𝑥))
3527, 34breqtrd 5111 . . . . . . . 8 ((𝑥 ∈ 𝒫 ℝ ∧ ¬ (vol*‘𝑥) ∈ ℝ) → ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥))
3635adantlr 712 . . . . . . 7 (((𝑥 ∈ 𝒫 ℝ ∧ ((vol*‘𝑥) ∈ ℝ → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥))) ∧ ¬ (vol*‘𝑥) ∈ ℝ) → ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥))
3717, 36pm2.61dan 810 . . . . . 6 ((𝑥 ∈ 𝒫 ℝ ∧ ((vol*‘𝑥) ∈ ℝ → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥))) → ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥))
3837ex 413 . . . . 5 (𝑥 ∈ 𝒫 ℝ → (((vol*‘𝑥) ∈ ℝ → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥)) → ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥)))
3912eqcomd 2743 . . . . . . . 8 ((𝑥 ∈ 𝒫 ℝ ∧ (vol*‘𝑥) ∈ ℝ) → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) = ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))))
40393adant2 1130 . . . . . . 7 ((𝑥 ∈ 𝒫 ℝ ∧ ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥) ∧ (vol*‘𝑥) ∈ ℝ) → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) = ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))))
41 simp2 1136 . . . . . . 7 ((𝑥 ∈ 𝒫 ℝ ∧ ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥) ∧ (vol*‘𝑥) ∈ ℝ) → ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥))
4240, 41eqbrtrd 5107 . . . . . 6 ((𝑥 ∈ 𝒫 ℝ ∧ ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥) ∧ (vol*‘𝑥) ∈ ℝ) → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥))
43423exp 1118 . . . . 5 (𝑥 ∈ 𝒫 ℝ → (((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥) → ((vol*‘𝑥) ∈ ℝ → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥))))
4438, 43impbid 211 . . . 4 (𝑥 ∈ 𝒫 ℝ → (((vol*‘𝑥) ∈ ℝ → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥)) ↔ ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥)))
4544ralbiia 3091 . . 3 (∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥)) ↔ ∀𝑥 ∈ 𝒫 ℝ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥))
4645anbi2i 623 . 2 ((𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥))) ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥)))
471, 46bitri 274 1 (𝐴 ∈ dom vol ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1540  wcel 2105  wral 3062  cdif 3893  cin 3895  wss 3896  𝒫 cpw 4543   class class class wbr 5085  dom cdm 5605  cfv 6463  (class class class)co 7313  cr 10940  0cc0 10941   + caddc 10944  +∞cpnf 11076  *cxr 11078  cle 11080   +𝑒 cxad 12916  [,]cicc 13152  vol*covol 24697  volcvol 24698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-sep 5236  ax-nul 5243  ax-pow 5301  ax-pr 5365  ax-un 7626  ax-cnex 10997  ax-resscn 10998  ax-1cn 10999  ax-icn 11000  ax-addcl 11001  ax-addrcl 11002  ax-mulcl 11003  ax-mulrcl 11004  ax-mulcom 11005  ax-addass 11006  ax-mulass 11007  ax-distr 11008  ax-i2m1 11009  ax-1ne0 11010  ax-1rid 11011  ax-rnegex 11012  ax-rrecex 11013  ax-cnre 11014  ax-pre-lttri 11015  ax-pre-lttrn 11016  ax-pre-ltadd 11017  ax-pre-mulgt0 11018  ax-pre-sup 11019
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-pss 3915  df-nul 4267  df-if 4470  df-pw 4545  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4849  df-iun 4937  df-br 5086  df-opab 5148  df-mpt 5169  df-tr 5203  df-id 5505  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5560  df-we 5562  df-xp 5611  df-rel 5612  df-cnv 5613  df-co 5614  df-dm 5615  df-rn 5616  df-res 5617  df-ima 5618  df-pred 6222  df-ord 6289  df-on 6290  df-lim 6291  df-suc 6292  df-iota 6415  df-fun 6465  df-fn 6466  df-f 6467  df-f1 6468  df-fo 6469  df-f1o 6470  df-fv 6471  df-riota 7270  df-ov 7316  df-oprab 7317  df-mpo 7318  df-om 7756  df-1st 7874  df-2nd 7875  df-frecs 8142  df-wrecs 8173  df-recs 8247  df-rdg 8286  df-er 8544  df-map 8663  df-en 8780  df-dom 8781  df-sdom 8782  df-sup 9269  df-inf 9270  df-pnf 11081  df-mnf 11082  df-xr 11083  df-ltxr 11084  df-le 11085  df-sub 11277  df-neg 11278  df-div 11703  df-nn 12044  df-2 12106  df-3 12107  df-n0 12304  df-z 12390  df-uz 12653  df-q 12759  df-rp 12801  df-xadd 12919  df-ioo 13153  df-ico 13155  df-icc 13156  df-fz 13310  df-fl 13582  df-seq 13792  df-exp 13853  df-cj 14879  df-re 14880  df-im 14881  df-sqrt 15015  df-abs 15016  df-ovol 24699  df-vol 24700
This theorem is referenced by:  ismbl4  43778
  Copyright terms: Public domain W3C validator