Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ismbl3 Structured version   Visualization version   GIF version

Theorem ismbl3 43417
Description: The predicate "𝐴 is Lebesgue-measurable". Similar to ismbl2 24596, but here +𝑒 is used, and the precondition (vol*‘𝑥) ∈ ℝ can be dropped. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Assertion
Ref Expression
ismbl3 (𝐴 ∈ dom vol ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥)))
Distinct variable group:   𝑥,𝐴

Proof of Theorem ismbl3
StepHypRef Expression
1 ismbl2 24596 . 2 (𝐴 ∈ dom vol ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥))))
2 inss1 4159 . . . . . . . . . . . 12 (𝑥𝐴) ⊆ 𝑥
32a1i 11 . . . . . . . . . . 11 ((𝑥 ∈ 𝒫 ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (𝑥𝐴) ⊆ 𝑥)
4 elpwi 4539 . . . . . . . . . . . 12 (𝑥 ∈ 𝒫 ℝ → 𝑥 ⊆ ℝ)
54adantr 480 . . . . . . . . . . 11 ((𝑥 ∈ 𝒫 ℝ ∧ (vol*‘𝑥) ∈ ℝ) → 𝑥 ⊆ ℝ)
6 simpr 484 . . . . . . . . . . 11 ((𝑥 ∈ 𝒫 ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘𝑥) ∈ ℝ)
7 ovolsscl 24555 . . . . . . . . . . 11 (((𝑥𝐴) ⊆ 𝑥𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥𝐴)) ∈ ℝ)
83, 5, 6, 7syl3anc 1369 . . . . . . . . . 10 ((𝑥 ∈ 𝒫 ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥𝐴)) ∈ ℝ)
9 difssd 4063 . . . . . . . . . . 11 ((𝑥 ∈ 𝒫 ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (𝑥𝐴) ⊆ 𝑥)
10 ovolsscl 24555 . . . . . . . . . . 11 (((𝑥𝐴) ⊆ 𝑥𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥𝐴)) ∈ ℝ)
119, 5, 6, 10syl3anc 1369 . . . . . . . . . 10 ((𝑥 ∈ 𝒫 ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥𝐴)) ∈ ℝ)
128, 11rexaddd 12897 . . . . . . . . 9 ((𝑥 ∈ 𝒫 ℝ ∧ (vol*‘𝑥) ∈ ℝ) → ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))))
1312adantlr 711 . . . . . . . 8 (((𝑥 ∈ 𝒫 ℝ ∧ ((vol*‘𝑥) ∈ ℝ → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥))) ∧ (vol*‘𝑥) ∈ ℝ) → ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) = ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))))
14 id 22 . . . . . . . . . 10 (((vol*‘𝑥) ∈ ℝ → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥)) → ((vol*‘𝑥) ∈ ℝ → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥)))
1514imp 406 . . . . . . . . 9 ((((vol*‘𝑥) ∈ ℝ → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥)) ∧ (vol*‘𝑥) ∈ ℝ) → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥))
1615adantll 710 . . . . . . . 8 (((𝑥 ∈ 𝒫 ℝ ∧ ((vol*‘𝑥) ∈ ℝ → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥))) ∧ (vol*‘𝑥) ∈ ℝ) → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥))
1713, 16eqbrtrd 5092 . . . . . . 7 (((𝑥 ∈ 𝒫 ℝ ∧ ((vol*‘𝑥) ∈ ℝ → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥))) ∧ (vol*‘𝑥) ∈ ℝ) → ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥))
182, 4sstrid 3928 . . . . . . . . . . . . 13 (𝑥 ∈ 𝒫 ℝ → (𝑥𝐴) ⊆ ℝ)
19 ovolcl 24547 . . . . . . . . . . . . 13 ((𝑥𝐴) ⊆ ℝ → (vol*‘(𝑥𝐴)) ∈ ℝ*)
2018, 19syl 17 . . . . . . . . . . . 12 (𝑥 ∈ 𝒫 ℝ → (vol*‘(𝑥𝐴)) ∈ ℝ*)
214ssdifssd 4073 . . . . . . . . . . . . 13 (𝑥 ∈ 𝒫 ℝ → (𝑥𝐴) ⊆ ℝ)
22 ovolcl 24547 . . . . . . . . . . . . 13 ((𝑥𝐴) ⊆ ℝ → (vol*‘(𝑥𝐴)) ∈ ℝ*)
2321, 22syl 17 . . . . . . . . . . . 12 (𝑥 ∈ 𝒫 ℝ → (vol*‘(𝑥𝐴)) ∈ ℝ*)
2420, 23xaddcld 12964 . . . . . . . . . . 11 (𝑥 ∈ 𝒫 ℝ → ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ∈ ℝ*)
25 pnfge 12795 . . . . . . . . . . 11 (((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ∈ ℝ* → ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ +∞)
2624, 25syl 17 . . . . . . . . . 10 (𝑥 ∈ 𝒫 ℝ → ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ +∞)
2726adantr 480 . . . . . . . . 9 ((𝑥 ∈ 𝒫 ℝ ∧ ¬ (vol*‘𝑥) ∈ ℝ) → ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ +∞)
28 ovolf 24551 . . . . . . . . . . . . 13 vol*:𝒫 ℝ⟶(0[,]+∞)
2928ffvelrni 6942 . . . . . . . . . . . 12 (𝑥 ∈ 𝒫 ℝ → (vol*‘𝑥) ∈ (0[,]+∞))
3029adantr 480 . . . . . . . . . . 11 ((𝑥 ∈ 𝒫 ℝ ∧ ¬ (vol*‘𝑥) ∈ ℝ) → (vol*‘𝑥) ∈ (0[,]+∞))
31 simpr 484 . . . . . . . . . . 11 ((𝑥 ∈ 𝒫 ℝ ∧ ¬ (vol*‘𝑥) ∈ ℝ) → ¬ (vol*‘𝑥) ∈ ℝ)
32 xrge0nre 13114 . . . . . . . . . . 11 (((vol*‘𝑥) ∈ (0[,]+∞) ∧ ¬ (vol*‘𝑥) ∈ ℝ) → (vol*‘𝑥) = +∞)
3330, 31, 32syl2anc 583 . . . . . . . . . 10 ((𝑥 ∈ 𝒫 ℝ ∧ ¬ (vol*‘𝑥) ∈ ℝ) → (vol*‘𝑥) = +∞)
3433eqcomd 2744 . . . . . . . . 9 ((𝑥 ∈ 𝒫 ℝ ∧ ¬ (vol*‘𝑥) ∈ ℝ) → +∞ = (vol*‘𝑥))
3527, 34breqtrd 5096 . . . . . . . 8 ((𝑥 ∈ 𝒫 ℝ ∧ ¬ (vol*‘𝑥) ∈ ℝ) → ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥))
3635adantlr 711 . . . . . . 7 (((𝑥 ∈ 𝒫 ℝ ∧ ((vol*‘𝑥) ∈ ℝ → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥))) ∧ ¬ (vol*‘𝑥) ∈ ℝ) → ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥))
3717, 36pm2.61dan 809 . . . . . 6 ((𝑥 ∈ 𝒫 ℝ ∧ ((vol*‘𝑥) ∈ ℝ → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥))) → ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥))
3837ex 412 . . . . 5 (𝑥 ∈ 𝒫 ℝ → (((vol*‘𝑥) ∈ ℝ → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥)) → ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥)))
3912eqcomd 2744 . . . . . . . 8 ((𝑥 ∈ 𝒫 ℝ ∧ (vol*‘𝑥) ∈ ℝ) → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) = ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))))
40393adant2 1129 . . . . . . 7 ((𝑥 ∈ 𝒫 ℝ ∧ ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥) ∧ (vol*‘𝑥) ∈ ℝ) → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) = ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))))
41 simp2 1135 . . . . . . 7 ((𝑥 ∈ 𝒫 ℝ ∧ ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥) ∧ (vol*‘𝑥) ∈ ℝ) → ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥))
4240, 41eqbrtrd 5092 . . . . . 6 ((𝑥 ∈ 𝒫 ℝ ∧ ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥) ∧ (vol*‘𝑥) ∈ ℝ) → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥))
43423exp 1117 . . . . 5 (𝑥 ∈ 𝒫 ℝ → (((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥) → ((vol*‘𝑥) ∈ ℝ → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥))))
4438, 43impbid 211 . . . 4 (𝑥 ∈ 𝒫 ℝ → (((vol*‘𝑥) ∈ ℝ → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥)) ↔ ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥)))
4544ralbiia 3089 . . 3 (∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥)) ↔ ∀𝑥 ∈ 𝒫 ℝ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥))
4645anbi2i 622 . 2 ((𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → ((vol*‘(𝑥𝐴)) + (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥))) ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥)))
471, 46bitri 274 1 (𝐴 ∈ dom vol ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ((vol*‘(𝑥𝐴)) +𝑒 (vol*‘(𝑥𝐴))) ≤ (vol*‘𝑥)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  cdif 3880  cin 3882  wss 3883  𝒫 cpw 4530   class class class wbr 5070  dom cdm 5580  cfv 6418  (class class class)co 7255  cr 10801  0cc0 10802   + caddc 10805  +∞cpnf 10937  *cxr 10939  cle 10941   +𝑒 cxad 12775  [,]cicc 13011  vol*covol 24531  volcvol 24532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-xadd 12778  df-ioo 13012  df-ico 13014  df-icc 13015  df-fz 13169  df-fl 13440  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-ovol 24533  df-vol 24534
This theorem is referenced by:  ismbl4  43424
  Copyright terms: Public domain W3C validator