| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xrletrd | Structured version Visualization version GIF version | ||
| Description: Transitive law for ordering on extended reals. (Contributed by Mario Carneiro, 23-Aug-2015.) |
| Ref | Expression |
|---|---|
| xrlttrd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| xrlttrd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
| xrlttrd.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ*) |
| xrletrd.4 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| xrletrd.5 | ⊢ (𝜑 → 𝐵 ≤ 𝐶) |
| Ref | Expression |
|---|---|
| xrletrd | ⊢ (𝜑 → 𝐴 ≤ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrletrd.4 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
| 2 | xrletrd.5 | . 2 ⊢ (𝜑 → 𝐵 ≤ 𝐶) | |
| 3 | xrlttrd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
| 4 | xrlttrd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
| 5 | xrlttrd.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ*) | |
| 6 | xrletr 13125 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 ≤ 𝐶)) | |
| 7 | 3, 4, 5, 6 | syl3anc 1373 | . 2 ⊢ (𝜑 → ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 ≤ 𝐶)) |
| 8 | 1, 2, 7 | mp2and 699 | 1 ⊢ (𝜑 → 𝐴 ≤ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 class class class wbr 5110 ℝ*cxr 11214 ≤ cle 11216 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-pre-lttri 11149 ax-pre-lttrn 11150 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 |
| This theorem is referenced by: xaddge0 13225 ixxub 13334 ixxlb 13335 limsupval2 15453 0ram 16998 xpsdsval 24276 xblss2ps 24296 xblss2 24297 comet 24408 stdbdxmet 24410 nmoleub 24626 metnrmlem1 24755 nmoleub2lem 25021 ovollb2lem 25396 ovoliunlem2 25411 ovolscalem1 25421 ovolicc1 25424 ovolicc2lem4 25428 voliunlem2 25459 uniioombllem3 25493 itg2uba 25651 itg2lea 25652 itg2split 25657 itg2monolem3 25660 itg2gt0 25668 lhop1lem 25925 dvfsumlem2 25940 dvfsumlem2OLD 25941 dvfsumlem3 25942 dvfsumlem4 25943 deg1addle2 26014 deg1sublt 26022 nmooge0 30703 ply1degltlss 33569 metideq 33890 measiun 34215 omssubadd 34298 carsgclctunlem2 34317 mblfinlem1 37658 ismblfin 37662 ftc1anclem8 37701 ftc1anc 37702 aks6d1c6lem2 42166 aks6d1c6lem3 42167 unitscyglem5 42194 hbtlem2 43120 idomodle 43187 xle2addd 45339 xralrple2 45357 infleinflem1 45373 xralrple4 45376 xralrple3 45377 suplesup2 45379 infleinf2 45417 infxrlesupxr 45439 inficc 45539 limsupequzlem 45727 limsupvaluz2 45743 supcnvlimsup 45745 liminfval2 45773 liminflelimsuplem 45780 limsupgtlem 45782 fourierdlem1 46113 sge0cl 46386 sge0lefi 46403 sge0iunmptlemre 46420 sge0isum 46432 omeunle 46521 omeiunle 46522 caratheodorylem2 46532 hoicvrrex 46561 ovnsubaddlem1 46575 ovolval5lem1 46657 pimdecfgtioo 46722 pimincfltioo 46723 |
| Copyright terms: Public domain | W3C validator |