| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xrletrd | Structured version Visualization version GIF version | ||
| Description: Transitive law for ordering on extended reals. (Contributed by Mario Carneiro, 23-Aug-2015.) |
| Ref | Expression |
|---|---|
| xrlttrd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| xrlttrd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
| xrlttrd.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ*) |
| xrletrd.4 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| xrletrd.5 | ⊢ (𝜑 → 𝐵 ≤ 𝐶) |
| Ref | Expression |
|---|---|
| xrletrd | ⊢ (𝜑 → 𝐴 ≤ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrletrd.4 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
| 2 | xrletrd.5 | . 2 ⊢ (𝜑 → 𝐵 ≤ 𝐶) | |
| 3 | xrlttrd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
| 4 | xrlttrd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
| 5 | xrlttrd.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ*) | |
| 6 | xrletr 13052 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 ≤ 𝐶)) | |
| 7 | 3, 4, 5, 6 | syl3anc 1373 | . 2 ⊢ (𝜑 → ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 ≤ 𝐶)) |
| 8 | 1, 2, 7 | mp2and 699 | 1 ⊢ (𝜑 → 𝐴 ≤ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 class class class wbr 5086 ℝ*cxr 11140 ≤ cle 11142 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-pre-lttri 11075 ax-pre-lttrn 11076 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-po 5519 df-so 5520 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 |
| This theorem is referenced by: xaddge0 13152 ixxub 13261 ixxlb 13262 limsupval2 15382 0ram 16927 xpsdsval 24291 xblss2ps 24311 xblss2 24312 comet 24423 stdbdxmet 24425 nmoleub 24641 metnrmlem1 24770 nmoleub2lem 25036 ovollb2lem 25411 ovoliunlem2 25426 ovolscalem1 25436 ovolicc1 25439 ovolicc2lem4 25443 voliunlem2 25474 uniioombllem3 25508 itg2uba 25666 itg2lea 25667 itg2split 25672 itg2monolem3 25675 itg2gt0 25683 lhop1lem 25940 dvfsumlem2 25955 dvfsumlem2OLD 25956 dvfsumlem3 25957 dvfsumlem4 25958 deg1addle2 26029 deg1sublt 26037 nmooge0 30739 ply1degltlss 33549 metideq 33898 measiun 34223 omssubadd 34305 carsgclctunlem2 34324 mblfinlem1 37697 ismblfin 37701 ftc1anclem8 37740 ftc1anc 37741 aks6d1c6lem2 42204 aks6d1c6lem3 42205 unitscyglem5 42232 hbtlem2 43157 idomodle 43224 xle2addd 45375 xralrple2 45393 infleinflem1 45408 xralrple4 45411 xralrple3 45412 suplesup2 45414 infleinf2 45452 infxrlesupxr 45474 inficc 45574 limsupequzlem 45760 limsupvaluz2 45776 supcnvlimsup 45778 liminfval2 45806 liminflelimsuplem 45813 limsupgtlem 45815 fourierdlem1 46146 sge0cl 46419 sge0lefi 46436 sge0iunmptlemre 46453 sge0isum 46465 omeunle 46554 omeiunle 46555 caratheodorylem2 46565 hoicvrrex 46594 ovnsubaddlem1 46608 ovolval5lem1 46690 pimdecfgtioo 46755 pimincfltioo 46756 |
| Copyright terms: Public domain | W3C validator |