| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xrletrd | Structured version Visualization version GIF version | ||
| Description: Transitive law for ordering on extended reals. (Contributed by Mario Carneiro, 23-Aug-2015.) |
| Ref | Expression |
|---|---|
| xrlttrd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| xrlttrd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
| xrlttrd.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ*) |
| xrletrd.4 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| xrletrd.5 | ⊢ (𝜑 → 𝐵 ≤ 𝐶) |
| Ref | Expression |
|---|---|
| xrletrd | ⊢ (𝜑 → 𝐴 ≤ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrletrd.4 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
| 2 | xrletrd.5 | . 2 ⊢ (𝜑 → 𝐵 ≤ 𝐶) | |
| 3 | xrlttrd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
| 4 | xrlttrd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
| 5 | xrlttrd.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ*) | |
| 6 | xrletr 13172 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 ≤ 𝐶)) | |
| 7 | 3, 4, 5, 6 | syl3anc 1373 | . 2 ⊢ (𝜑 → ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 ≤ 𝐶)) |
| 8 | 1, 2, 7 | mp2and 699 | 1 ⊢ (𝜑 → 𝐴 ≤ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 class class class wbr 5119 ℝ*cxr 11266 ≤ cle 11268 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-pre-lttri 11201 ax-pre-lttrn 11202 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-po 5561 df-so 5562 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 |
| This theorem is referenced by: xaddge0 13272 ixxub 13381 ixxlb 13382 limsupval2 15494 0ram 17038 xpsdsval 24318 xblss2ps 24338 xblss2 24339 comet 24450 stdbdxmet 24452 nmoleub 24668 metnrmlem1 24797 nmoleub2lem 25063 ovollb2lem 25439 ovoliunlem2 25454 ovolscalem1 25464 ovolicc1 25467 ovolicc2lem4 25471 voliunlem2 25502 uniioombllem3 25536 itg2uba 25694 itg2lea 25695 itg2split 25700 itg2monolem3 25703 itg2gt0 25711 lhop1lem 25968 dvfsumlem2 25983 dvfsumlem2OLD 25984 dvfsumlem3 25985 dvfsumlem4 25986 deg1addle2 26057 deg1sublt 26065 nmooge0 30694 ply1degltlss 33552 metideq 33870 measiun 34195 omssubadd 34278 carsgclctunlem2 34297 mblfinlem1 37627 ismblfin 37631 ftc1anclem8 37670 ftc1anc 37671 aks6d1c6lem2 42130 aks6d1c6lem3 42131 unitscyglem5 42158 hbtlem2 43095 idomodle 43162 xle2addd 45311 xralrple2 45329 infleinflem1 45345 xralrple4 45348 xralrple3 45349 suplesup2 45351 infleinf2 45389 infxrlesupxr 45411 inficc 45511 limsupequzlem 45699 limsupvaluz2 45715 supcnvlimsup 45717 liminfval2 45745 liminflelimsuplem 45752 limsupgtlem 45754 fourierdlem1 46085 sge0cl 46358 sge0lefi 46375 sge0iunmptlemre 46392 sge0isum 46404 omeunle 46493 omeiunle 46494 caratheodorylem2 46504 hoicvrrex 46533 ovnsubaddlem1 46547 ovolval5lem1 46629 pimdecfgtioo 46694 pimincfltioo 46695 |
| Copyright terms: Public domain | W3C validator |