| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xrletrd | Structured version Visualization version GIF version | ||
| Description: Transitive law for ordering on extended reals. (Contributed by Mario Carneiro, 23-Aug-2015.) |
| Ref | Expression |
|---|---|
| xrlttrd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| xrlttrd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
| xrlttrd.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ*) |
| xrletrd.4 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| xrletrd.5 | ⊢ (𝜑 → 𝐵 ≤ 𝐶) |
| Ref | Expression |
|---|---|
| xrletrd | ⊢ (𝜑 → 𝐴 ≤ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrletrd.4 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
| 2 | xrletrd.5 | . 2 ⊢ (𝜑 → 𝐵 ≤ 𝐶) | |
| 3 | xrlttrd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
| 4 | xrlttrd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
| 5 | xrlttrd.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ*) | |
| 6 | xrletr 13094 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 ≤ 𝐶)) | |
| 7 | 3, 4, 5, 6 | syl3anc 1373 | . 2 ⊢ (𝜑 → ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 ≤ 𝐶)) |
| 8 | 1, 2, 7 | mp2and 699 | 1 ⊢ (𝜑 → 𝐴 ≤ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 class class class wbr 5102 ℝ*cxr 11183 ≤ cle 11185 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-pre-lttri 11118 ax-pre-lttrn 11119 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-po 5539 df-so 5540 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 |
| This theorem is referenced by: xaddge0 13194 ixxub 13303 ixxlb 13304 limsupval2 15422 0ram 16967 xpsdsval 24245 xblss2ps 24265 xblss2 24266 comet 24377 stdbdxmet 24379 nmoleub 24595 metnrmlem1 24724 nmoleub2lem 24990 ovollb2lem 25365 ovoliunlem2 25380 ovolscalem1 25390 ovolicc1 25393 ovolicc2lem4 25397 voliunlem2 25428 uniioombllem3 25462 itg2uba 25620 itg2lea 25621 itg2split 25626 itg2monolem3 25629 itg2gt0 25637 lhop1lem 25894 dvfsumlem2 25909 dvfsumlem2OLD 25910 dvfsumlem3 25911 dvfsumlem4 25912 deg1addle2 25983 deg1sublt 25991 nmooge0 30669 ply1degltlss 33535 metideq 33856 measiun 34181 omssubadd 34264 carsgclctunlem2 34283 mblfinlem1 37624 ismblfin 37628 ftc1anclem8 37667 ftc1anc 37668 aks6d1c6lem2 42132 aks6d1c6lem3 42133 unitscyglem5 42160 hbtlem2 43086 idomodle 43153 xle2addd 45305 xralrple2 45323 infleinflem1 45339 xralrple4 45342 xralrple3 45343 suplesup2 45345 infleinf2 45383 infxrlesupxr 45405 inficc 45505 limsupequzlem 45693 limsupvaluz2 45709 supcnvlimsup 45711 liminfval2 45739 liminflelimsuplem 45746 limsupgtlem 45748 fourierdlem1 46079 sge0cl 46352 sge0lefi 46369 sge0iunmptlemre 46386 sge0isum 46398 omeunle 46487 omeiunle 46488 caratheodorylem2 46498 hoicvrrex 46527 ovnsubaddlem1 46541 ovolval5lem1 46623 pimdecfgtioo 46688 pimincfltioo 46689 |
| Copyright terms: Public domain | W3C validator |