| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xrletrd | Structured version Visualization version GIF version | ||
| Description: Transitive law for ordering on extended reals. (Contributed by Mario Carneiro, 23-Aug-2015.) |
| Ref | Expression |
|---|---|
| xrlttrd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| xrlttrd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
| xrlttrd.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ*) |
| xrletrd.4 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| xrletrd.5 | ⊢ (𝜑 → 𝐵 ≤ 𝐶) |
| Ref | Expression |
|---|---|
| xrletrd | ⊢ (𝜑 → 𝐴 ≤ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrletrd.4 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
| 2 | xrletrd.5 | . 2 ⊢ (𝜑 → 𝐵 ≤ 𝐶) | |
| 3 | xrlttrd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
| 4 | xrlttrd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
| 5 | xrlttrd.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ*) | |
| 6 | xrletr 13063 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 ≤ 𝐶)) | |
| 7 | 3, 4, 5, 6 | syl3anc 1373 | . 2 ⊢ (𝜑 → ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 ≤ 𝐶)) |
| 8 | 1, 2, 7 | mp2and 699 | 1 ⊢ (𝜑 → 𝐴 ≤ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2113 class class class wbr 5095 ℝ*cxr 11156 ≤ cle 11158 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-pre-lttri 11091 ax-pre-lttrn 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-po 5529 df-so 5530 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 |
| This theorem is referenced by: xaddge0 13164 ixxub 13273 ixxlb 13274 limsupval2 15394 0ram 16939 xpsdsval 24316 xblss2ps 24336 xblss2 24337 comet 24448 stdbdxmet 24450 nmoleub 24666 metnrmlem1 24795 nmoleub2lem 25061 ovollb2lem 25436 ovoliunlem2 25451 ovolscalem1 25461 ovolicc1 25464 ovolicc2lem4 25468 voliunlem2 25499 uniioombllem3 25533 itg2uba 25691 itg2lea 25692 itg2split 25697 itg2monolem3 25700 itg2gt0 25708 lhop1lem 25965 dvfsumlem2 25980 dvfsumlem2OLD 25981 dvfsumlem3 25982 dvfsumlem4 25983 deg1addle2 26054 deg1sublt 26062 nmooge0 30768 ply1degltlss 33605 metideq 33978 measiun 34303 omssubadd 34385 carsgclctunlem2 34404 mblfinlem1 37770 ismblfin 37774 ftc1anclem8 37813 ftc1anc 37814 aks6d1c6lem2 42337 aks6d1c6lem3 42338 unitscyglem5 42365 hbtlem2 43281 idomodle 43348 xle2addd 45497 xralrple2 45515 infleinflem1 45530 xralrple4 45533 xralrple3 45534 suplesup2 45536 infleinf2 45574 infxrlesupxr 45596 inficc 45696 limsupequzlem 45882 limsupvaluz2 45898 supcnvlimsup 45900 liminfval2 45928 liminflelimsuplem 45935 limsupgtlem 45937 fourierdlem1 46268 sge0cl 46541 sge0lefi 46558 sge0iunmptlemre 46575 sge0isum 46587 omeunle 46676 omeiunle 46677 caratheodorylem2 46687 hoicvrrex 46716 ovnsubaddlem1 46730 ovolval5lem1 46812 pimdecfgtioo 46877 pimincfltioo 46878 |
| Copyright terms: Public domain | W3C validator |