![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xrletrd | Structured version Visualization version GIF version |
Description: Transitive law for ordering on extended reals. (Contributed by Mario Carneiro, 23-Aug-2015.) |
Ref | Expression |
---|---|
xrlttrd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
xrlttrd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
xrlttrd.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ*) |
xrletrd.4 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
xrletrd.5 | ⊢ (𝜑 → 𝐵 ≤ 𝐶) |
Ref | Expression |
---|---|
xrletrd | ⊢ (𝜑 → 𝐴 ≤ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrletrd.4 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
2 | xrletrd.5 | . 2 ⊢ (𝜑 → 𝐵 ≤ 𝐶) | |
3 | xrlttrd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
4 | xrlttrd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
5 | xrlttrd.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ*) | |
6 | xrletr 13196 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 ≤ 𝐶)) | |
7 | 3, 4, 5, 6 | syl3anc 1370 | . 2 ⊢ (𝜑 → ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 ≤ 𝐶)) |
8 | 1, 2, 7 | mp2and 699 | 1 ⊢ (𝜑 → 𝐴 ≤ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2105 class class class wbr 5147 ℝ*cxr 11291 ≤ cle 11293 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-pre-lttri 11226 ax-pre-lttrn 11227 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-po 5596 df-so 5597 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 |
This theorem is referenced by: xaddge0 13296 ixxub 13404 ixxlb 13405 limsupval2 15512 0ram 17053 xpsdsval 24406 xblss2ps 24426 xblss2 24427 comet 24541 stdbdxmet 24543 nmoleub 24767 metnrmlem1 24894 nmoleub2lem 25160 ovollb2lem 25536 ovoliunlem2 25551 ovolscalem1 25561 ovolicc1 25564 ovolicc2lem4 25568 voliunlem2 25599 uniioombllem3 25633 itg2uba 25792 itg2lea 25793 itg2split 25798 itg2monolem3 25801 itg2gt0 25809 lhop1lem 26066 dvfsumlem2 26081 dvfsumlem2OLD 26082 dvfsumlem3 26083 dvfsumlem4 26084 deg1addle2 26155 deg1sublt 26163 nmooge0 30795 ply1degltlss 33596 metideq 33853 measiun 34198 omssubadd 34281 carsgclctunlem2 34300 mblfinlem1 37643 ismblfin 37647 ftc1anclem8 37686 ftc1anc 37687 aks6d1c6lem2 42152 aks6d1c6lem3 42153 unitscyglem5 42180 hbtlem2 43112 idomodle 43179 xle2addd 45285 xralrple2 45303 infleinflem1 45319 xralrple4 45322 xralrple3 45323 suplesup2 45325 infleinf2 45363 infxrlesupxr 45385 inficc 45486 limsupequzlem 45677 limsupvaluz2 45693 supcnvlimsup 45695 liminfval2 45723 liminflelimsuplem 45730 limsupgtlem 45732 fourierdlem1 46063 sge0cl 46336 sge0lefi 46353 sge0iunmptlemre 46370 sge0isum 46382 omeunle 46471 omeiunle 46472 caratheodorylem2 46482 hoicvrrex 46511 ovnsubaddlem1 46525 ovolval5lem1 46607 pimdecfgtioo 46672 pimincfltioo 46673 |
Copyright terms: Public domain | W3C validator |