![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xrletrd | Structured version Visualization version GIF version |
Description: Transitive law for ordering on extended reals. (Contributed by Mario Carneiro, 23-Aug-2015.) |
Ref | Expression |
---|---|
xrlttrd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
xrlttrd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
xrlttrd.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ*) |
xrletrd.4 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
xrletrd.5 | ⊢ (𝜑 → 𝐵 ≤ 𝐶) |
Ref | Expression |
---|---|
xrletrd | ⊢ (𝜑 → 𝐴 ≤ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrletrd.4 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
2 | xrletrd.5 | . 2 ⊢ (𝜑 → 𝐵 ≤ 𝐶) | |
3 | xrlttrd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
4 | xrlttrd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
5 | xrlttrd.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ*) | |
6 | xrletr 13134 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 ≤ 𝐶)) | |
7 | 3, 4, 5, 6 | syl3anc 1368 | . 2 ⊢ (𝜑 → ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 ≤ 𝐶)) |
8 | 1, 2, 7 | mp2and 696 | 1 ⊢ (𝜑 → 𝐴 ≤ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2098 class class class wbr 5138 ℝ*cxr 11244 ≤ cle 11246 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11162 ax-resscn 11163 ax-pre-lttri 11180 ax-pre-lttrn 11181 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-po 5578 df-so 5579 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 |
This theorem is referenced by: xaddge0 13234 ixxub 13342 ixxlb 13343 limsupval2 15421 0ram 16952 xpsdsval 24209 xblss2ps 24229 xblss2 24230 comet 24344 stdbdxmet 24346 nmoleub 24570 metnrmlem1 24697 nmoleub2lem 24963 ovollb2lem 25339 ovoliunlem2 25354 ovolscalem1 25364 ovolicc1 25367 ovolicc2lem4 25371 voliunlem2 25402 uniioombllem3 25436 itg2uba 25595 itg2lea 25596 itg2split 25601 itg2monolem3 25604 itg2gt0 25612 lhop1lem 25868 dvfsumlem2 25883 dvfsumlem2OLD 25884 dvfsumlem3 25885 dvfsumlem4 25886 deg1addle2 25960 deg1sublt 25968 nmooge0 30489 ply1degltlss 33133 metideq 33362 measiun 33705 omssubadd 33788 carsgclctunlem2 33807 mblfinlem1 37015 ismblfin 37019 ftc1anclem8 37058 ftc1anc 37059 hbtlem2 42355 idomodle 42427 xle2addd 44531 xralrple2 44549 infleinflem1 44565 xralrple4 44568 xralrple3 44569 suplesup2 44571 infleinf2 44609 infxrlesupxr 44631 inficc 44732 limsupequzlem 44923 limsupvaluz2 44939 supcnvlimsup 44941 liminfval2 44969 liminflelimsuplem 44976 limsupgtlem 44978 fourierdlem1 45309 sge0cl 45582 sge0lefi 45599 sge0iunmptlemre 45616 sge0isum 45628 omeunle 45717 omeiunle 45718 caratheodorylem2 45728 hoicvrrex 45757 ovnsubaddlem1 45771 ovolval5lem1 45853 pimdecfgtioo 45918 pimincfltioo 45919 |
Copyright terms: Public domain | W3C validator |