Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xrletrd | Structured version Visualization version GIF version |
Description: Transitive law for ordering on extended reals. (Contributed by Mario Carneiro, 23-Aug-2015.) |
Ref | Expression |
---|---|
xrlttrd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
xrlttrd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
xrlttrd.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ*) |
xrletrd.4 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
xrletrd.5 | ⊢ (𝜑 → 𝐵 ≤ 𝐶) |
Ref | Expression |
---|---|
xrletrd | ⊢ (𝜑 → 𝐴 ≤ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrletrd.4 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
2 | xrletrd.5 | . 2 ⊢ (𝜑 → 𝐵 ≤ 𝐶) | |
3 | xrlttrd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
4 | xrlttrd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
5 | xrlttrd.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ*) | |
6 | xrletr 12821 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 ≤ 𝐶)) | |
7 | 3, 4, 5, 6 | syl3anc 1369 | . 2 ⊢ (𝜑 → ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 ≤ 𝐶)) |
8 | 1, 2, 7 | mp2and 695 | 1 ⊢ (𝜑 → 𝐴 ≤ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 class class class wbr 5070 ℝ*cxr 10939 ≤ cle 10941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-pre-lttri 10876 ax-pre-lttrn 10877 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 |
This theorem is referenced by: xaddge0 12921 ixxub 13029 ixxlb 13030 limsupval2 15117 0ram 16649 xpsdsval 23442 xblss2ps 23462 xblss2 23463 comet 23575 stdbdxmet 23577 nmoleub 23801 metnrmlem1 23928 nmoleub2lem 24183 ovollb2lem 24557 ovoliunlem2 24572 ovolscalem1 24582 ovolicc1 24585 ovolicc2lem4 24589 voliunlem2 24620 uniioombllem3 24654 itg2uba 24813 itg2lea 24814 itg2split 24819 itg2monolem3 24822 itg2gt0 24830 lhop1lem 25082 dvfsumlem2 25096 dvfsumlem3 25097 dvfsumlem4 25098 deg1addle2 25172 deg1sublt 25180 nmooge0 29030 metideq 31745 measiun 32086 omssubadd 32167 carsgclctunlem2 32186 mblfinlem1 35741 ismblfin 35745 ftc1anclem8 35784 ftc1anc 35785 hbtlem2 40865 idomodle 40937 xle2addd 42765 xralrple2 42783 infleinflem1 42799 xralrple4 42802 xralrple3 42803 suplesup2 42805 infleinf2 42844 infxrlesupxr 42866 inficc 42962 limsupequzlem 43153 limsupvaluz2 43169 supcnvlimsup 43171 liminfval2 43199 liminflelimsuplem 43206 limsupgtlem 43208 fourierdlem1 43539 sge0cl 43809 sge0lefi 43826 sge0iunmptlemre 43843 sge0isum 43855 omeunle 43944 omeiunle 43945 caratheodorylem2 43955 hoicvrrex 43984 ovnsubaddlem1 43998 ovolval5lem1 44080 pimdecfgtioo 44141 pimincfltioo 44142 |
Copyright terms: Public domain | W3C validator |