| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xrletrd | Structured version Visualization version GIF version | ||
| Description: Transitive law for ordering on extended reals. (Contributed by Mario Carneiro, 23-Aug-2015.) |
| Ref | Expression |
|---|---|
| xrlttrd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| xrlttrd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
| xrlttrd.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ*) |
| xrletrd.4 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| xrletrd.5 | ⊢ (𝜑 → 𝐵 ≤ 𝐶) |
| Ref | Expression |
|---|---|
| xrletrd | ⊢ (𝜑 → 𝐴 ≤ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrletrd.4 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
| 2 | xrletrd.5 | . 2 ⊢ (𝜑 → 𝐵 ≤ 𝐶) | |
| 3 | xrlttrd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
| 4 | xrlttrd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
| 5 | xrlttrd.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ*) | |
| 6 | xrletr 13078 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 ≤ 𝐶)) | |
| 7 | 3, 4, 5, 6 | syl3anc 1373 | . 2 ⊢ (𝜑 → ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 ≤ 𝐶)) |
| 8 | 1, 2, 7 | mp2and 699 | 1 ⊢ (𝜑 → 𝐴 ≤ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 class class class wbr 5095 ℝ*cxr 11167 ≤ cle 11169 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-pre-lttri 11102 ax-pre-lttrn 11103 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-po 5531 df-so 5532 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 |
| This theorem is referenced by: xaddge0 13178 ixxub 13287 ixxlb 13288 limsupval2 15405 0ram 16950 xpsdsval 24285 xblss2ps 24305 xblss2 24306 comet 24417 stdbdxmet 24419 nmoleub 24635 metnrmlem1 24764 nmoleub2lem 25030 ovollb2lem 25405 ovoliunlem2 25420 ovolscalem1 25430 ovolicc1 25433 ovolicc2lem4 25437 voliunlem2 25468 uniioombllem3 25502 itg2uba 25660 itg2lea 25661 itg2split 25666 itg2monolem3 25669 itg2gt0 25677 lhop1lem 25934 dvfsumlem2 25949 dvfsumlem2OLD 25950 dvfsumlem3 25951 dvfsumlem4 25952 deg1addle2 26023 deg1sublt 26031 nmooge0 30729 ply1degltlss 33541 metideq 33862 measiun 34187 omssubadd 34270 carsgclctunlem2 34289 mblfinlem1 37639 ismblfin 37643 ftc1anclem8 37682 ftc1anc 37683 aks6d1c6lem2 42147 aks6d1c6lem3 42148 unitscyglem5 42175 hbtlem2 43100 idomodle 43167 xle2addd 45319 xralrple2 45337 infleinflem1 45353 xralrple4 45356 xralrple3 45357 suplesup2 45359 infleinf2 45397 infxrlesupxr 45419 inficc 45519 limsupequzlem 45707 limsupvaluz2 45723 supcnvlimsup 45725 liminfval2 45753 liminflelimsuplem 45760 limsupgtlem 45762 fourierdlem1 46093 sge0cl 46366 sge0lefi 46383 sge0iunmptlemre 46400 sge0isum 46412 omeunle 46501 omeiunle 46502 caratheodorylem2 46512 hoicvrrex 46541 ovnsubaddlem1 46555 ovolval5lem1 46637 pimdecfgtioo 46702 pimincfltioo 46703 |
| Copyright terms: Public domain | W3C validator |