![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xrletrd | Structured version Visualization version GIF version |
Description: Transitive law for ordering on extended reals. (Contributed by Mario Carneiro, 23-Aug-2015.) |
Ref | Expression |
---|---|
xrlttrd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
xrlttrd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
xrlttrd.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ*) |
xrletrd.4 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
xrletrd.5 | ⊢ (𝜑 → 𝐵 ≤ 𝐶) |
Ref | Expression |
---|---|
xrletrd | ⊢ (𝜑 → 𝐴 ≤ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrletrd.4 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
2 | xrletrd.5 | . 2 ⊢ (𝜑 → 𝐵 ≤ 𝐶) | |
3 | xrlttrd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
4 | xrlttrd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
5 | xrlttrd.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ*) | |
6 | xrletr 13220 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 ≤ 𝐶)) | |
7 | 3, 4, 5, 6 | syl3anc 1371 | . 2 ⊢ (𝜑 → ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 ≤ 𝐶)) |
8 | 1, 2, 7 | mp2and 698 | 1 ⊢ (𝜑 → 𝐴 ≤ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 class class class wbr 5166 ℝ*cxr 11323 ≤ cle 11325 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-pre-lttri 11258 ax-pre-lttrn 11259 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 |
This theorem is referenced by: xaddge0 13320 ixxub 13428 ixxlb 13429 limsupval2 15526 0ram 17067 xpsdsval 24412 xblss2ps 24432 xblss2 24433 comet 24547 stdbdxmet 24549 nmoleub 24773 metnrmlem1 24900 nmoleub2lem 25166 ovollb2lem 25542 ovoliunlem2 25557 ovolscalem1 25567 ovolicc1 25570 ovolicc2lem4 25574 voliunlem2 25605 uniioombllem3 25639 itg2uba 25798 itg2lea 25799 itg2split 25804 itg2monolem3 25807 itg2gt0 25815 lhop1lem 26072 dvfsumlem2 26087 dvfsumlem2OLD 26088 dvfsumlem3 26089 dvfsumlem4 26090 deg1addle2 26161 deg1sublt 26169 nmooge0 30799 ply1degltlss 33582 metideq 33839 measiun 34182 omssubadd 34265 carsgclctunlem2 34284 mblfinlem1 37617 ismblfin 37621 ftc1anclem8 37660 ftc1anc 37661 aks6d1c6lem2 42128 aks6d1c6lem3 42129 unitscyglem5 42156 hbtlem2 43081 idomodle 43152 xle2addd 45251 xralrple2 45269 infleinflem1 45285 xralrple4 45288 xralrple3 45289 suplesup2 45291 infleinf2 45329 infxrlesupxr 45351 inficc 45452 limsupequzlem 45643 limsupvaluz2 45659 supcnvlimsup 45661 liminfval2 45689 liminflelimsuplem 45696 limsupgtlem 45698 fourierdlem1 46029 sge0cl 46302 sge0lefi 46319 sge0iunmptlemre 46336 sge0isum 46348 omeunle 46437 omeiunle 46438 caratheodorylem2 46448 hoicvrrex 46477 ovnsubaddlem1 46491 ovolval5lem1 46573 pimdecfgtioo 46638 pimincfltioo 46639 |
Copyright terms: Public domain | W3C validator |