Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xrletrd | Structured version Visualization version GIF version |
Description: Transitive law for ordering on extended reals. (Contributed by Mario Carneiro, 23-Aug-2015.) |
Ref | Expression |
---|---|
xrlttrd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
xrlttrd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
xrlttrd.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ*) |
xrletrd.4 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
xrletrd.5 | ⊢ (𝜑 → 𝐵 ≤ 𝐶) |
Ref | Expression |
---|---|
xrletrd | ⊢ (𝜑 → 𝐴 ≤ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrletrd.4 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
2 | xrletrd.5 | . 2 ⊢ (𝜑 → 𝐵 ≤ 𝐶) | |
3 | xrlttrd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
4 | xrlttrd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
5 | xrlttrd.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ*) | |
6 | xrletr 12634 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 ≤ 𝐶)) | |
7 | 3, 4, 5, 6 | syl3anc 1372 | . 2 ⊢ (𝜑 → ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 ≤ 𝐶)) |
8 | 1, 2, 7 | mp2and 699 | 1 ⊢ (𝜑 → 𝐴 ≤ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∈ wcel 2114 class class class wbr 5030 ℝ*cxr 10752 ≤ cle 10754 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 ax-cnex 10671 ax-resscn 10672 ax-pre-lttri 10689 ax-pre-lttrn 10690 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-op 4523 df-uni 4797 df-br 5031 df-opab 5093 df-mpt 5111 df-id 5429 df-po 5442 df-so 5443 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-er 8320 df-en 8556 df-dom 8557 df-sdom 8558 df-pnf 10755 df-mnf 10756 df-xr 10757 df-ltxr 10758 df-le 10759 |
This theorem is referenced by: xaddge0 12734 ixxub 12842 ixxlb 12843 limsupval2 14927 0ram 16456 xpsdsval 23134 xblss2ps 23154 xblss2 23155 comet 23266 stdbdxmet 23268 nmoleub 23484 metnrmlem1 23611 nmoleub2lem 23866 ovollb2lem 24240 ovoliunlem2 24255 ovolscalem1 24265 ovolicc1 24268 ovolicc2lem4 24272 voliunlem2 24303 uniioombllem3 24337 itg2uba 24496 itg2lea 24497 itg2split 24502 itg2monolem3 24505 itg2gt0 24513 lhop1lem 24765 dvfsumlem2 24779 dvfsumlem3 24780 dvfsumlem4 24781 deg1addle2 24855 deg1sublt 24863 nmooge0 28702 metideq 31415 measiun 31756 omssubadd 31837 carsgclctunlem2 31856 mblfinlem1 35437 ismblfin 35441 ftc1anclem8 35480 ftc1anc 35481 hbtlem2 40521 idomodle 40593 xle2addd 42413 xralrple2 42431 infleinflem1 42447 xralrple4 42450 xralrple3 42451 suplesup2 42453 infleinf2 42492 infxrlesupxr 42514 inficc 42612 limsupequzlem 42805 limsupvaluz2 42821 supcnvlimsup 42823 liminfval2 42851 liminflelimsuplem 42858 limsupgtlem 42860 fourierdlem1 43191 sge0cl 43461 sge0lefi 43478 sge0iunmptlemre 43495 sge0isum 43507 omeunle 43596 omeiunle 43597 caratheodorylem2 43607 hoicvrrex 43636 ovnsubaddlem1 43650 ovolval5lem1 43732 pimdecfgtioo 43793 pimincfltioo 43794 |
Copyright terms: Public domain | W3C validator |