| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xrletrd | Structured version Visualization version GIF version | ||
| Description: Transitive law for ordering on extended reals. (Contributed by Mario Carneiro, 23-Aug-2015.) |
| Ref | Expression |
|---|---|
| xrlttrd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| xrlttrd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
| xrlttrd.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ*) |
| xrletrd.4 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| xrletrd.5 | ⊢ (𝜑 → 𝐵 ≤ 𝐶) |
| Ref | Expression |
|---|---|
| xrletrd | ⊢ (𝜑 → 𝐴 ≤ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrletrd.4 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
| 2 | xrletrd.5 | . 2 ⊢ (𝜑 → 𝐵 ≤ 𝐶) | |
| 3 | xrlttrd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
| 4 | xrlttrd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
| 5 | xrlttrd.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ*) | |
| 6 | xrletr 13167 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 ≤ 𝐶)) | |
| 7 | 3, 4, 5, 6 | syl3anc 1372 | . 2 ⊢ (𝜑 → ((𝐴 ≤ 𝐵 ∧ 𝐵 ≤ 𝐶) → 𝐴 ≤ 𝐶)) |
| 8 | 1, 2, 7 | mp2and 699 | 1 ⊢ (𝜑 → 𝐴 ≤ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2107 class class class wbr 5117 ℝ*cxr 11261 ≤ cle 11263 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5264 ax-nul 5274 ax-pow 5333 ax-pr 5400 ax-un 7724 ax-cnex 11178 ax-resscn 11179 ax-pre-lttri 11196 ax-pre-lttrn 11197 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4882 df-br 5118 df-opab 5180 df-mpt 5200 df-id 5546 df-po 5559 df-so 5560 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-iota 6481 df-fun 6530 df-fn 6531 df-f 6532 df-f1 6533 df-fo 6534 df-f1o 6535 df-fv 6536 df-er 8714 df-en 8955 df-dom 8956 df-sdom 8957 df-pnf 11264 df-mnf 11265 df-xr 11266 df-ltxr 11267 df-le 11268 |
| This theorem is referenced by: xaddge0 13267 ixxub 13375 ixxlb 13376 limsupval2 15485 0ram 17027 xpsdsval 24307 xblss2ps 24327 xblss2 24328 comet 24439 stdbdxmet 24441 nmoleub 24657 metnrmlem1 24786 nmoleub2lem 25052 ovollb2lem 25428 ovoliunlem2 25443 ovolscalem1 25453 ovolicc1 25456 ovolicc2lem4 25460 voliunlem2 25491 uniioombllem3 25525 itg2uba 25683 itg2lea 25684 itg2split 25689 itg2monolem3 25692 itg2gt0 25700 lhop1lem 25957 dvfsumlem2 25972 dvfsumlem2OLD 25973 dvfsumlem3 25974 dvfsumlem4 25975 deg1addle2 26046 deg1sublt 26054 nmooge0 30682 ply1degltlss 33541 metideq 33853 measiun 34178 omssubadd 34261 carsgclctunlem2 34280 mblfinlem1 37610 ismblfin 37614 ftc1anclem8 37653 ftc1anc 37654 aks6d1c6lem2 42113 aks6d1c6lem3 42114 unitscyglem5 42141 hbtlem2 43080 idomodle 43147 xle2addd 45297 xralrple2 45315 infleinflem1 45331 xralrple4 45334 xralrple3 45335 suplesup2 45337 infleinf2 45375 infxrlesupxr 45397 inficc 45497 limsupequzlem 45687 limsupvaluz2 45703 supcnvlimsup 45705 liminfval2 45733 liminflelimsuplem 45740 limsupgtlem 45742 fourierdlem1 46073 sge0cl 46346 sge0lefi 46363 sge0iunmptlemre 46380 sge0isum 46392 omeunle 46481 omeiunle 46482 caratheodorylem2 46492 hoicvrrex 46521 ovnsubaddlem1 46535 ovolval5lem1 46617 pimdecfgtioo 46682 pimincfltioo 46683 |
| Copyright terms: Public domain | W3C validator |