MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zorn2 Structured version   Visualization version   GIF version

Theorem zorn2 10577
Description: Zorn's Lemma of [Monk1] p. 117. This theorem is equivalent to the Axiom of Choice and states that every partially ordered set 𝐴 (with an ordering relation 𝑅) in which every totally ordered subset has an upper bound, contains at least one maximal element. The main proof consists of lemmas zorn2lem1 10567 through zorn2lem7 10573; this final piece mainly changes bound variables to eliminate the hypotheses of zorn2lem7 10573. (Contributed by NM, 6-Apr-1997.) (Revised by Mario Carneiro, 9-May-2015.)
Hypothesis
Ref Expression
zornn0.1 𝐴 ∈ V
Assertion
Ref Expression
zorn2 ((𝑅 Po 𝐴 ∧ ∀𝑤((𝑤𝐴𝑅 Or 𝑤) → ∃𝑥𝐴𝑧𝑤 (𝑧𝑅𝑥𝑧 = 𝑥))) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑅𝑦)
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝐴   𝑤,𝑅,𝑥,𝑦,𝑧

Proof of Theorem zorn2
StepHypRef Expression
1 zornn0.1 . . 3 𝐴 ∈ V
2 numth3 10541 . . 3 (𝐴 ∈ V → 𝐴 ∈ dom card)
31, 2ax-mp 5 . 2 𝐴 ∈ dom card
4 zorn2g 10574 . 2 ((𝐴 ∈ dom card ∧ 𝑅 Po 𝐴 ∧ ∀𝑤((𝑤𝐴𝑅 Or 𝑤) → ∃𝑥𝐴𝑧𝑤 (𝑧𝑅𝑥𝑧 = 𝑥))) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑅𝑦)
53, 4mp3an1 1448 1 ((𝑅 Po 𝐴 ∧ ∀𝑤((𝑤𝐴𝑅 Or 𝑤) → ∃𝑥𝐴𝑧𝑤 (𝑧𝑅𝑥𝑧 = 𝑥))) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑅𝑦)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 846  wal 1535  wcel 2108  wral 3067  wrex 3076  Vcvv 3488  wss 3976   class class class wbr 5166   Po wpo 5605   Or wor 5606  dom cdm 5700  cardccrd 10006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7772  ax-ac2 10534
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6334  df-ord 6400  df-on 6401  df-suc 6403  df-iota 6527  df-fun 6577  df-fn 6578  df-f 6579  df-f1 6580  df-fo 6581  df-f1o 6582  df-fv 6583  df-isom 6584  df-riota 7406  df-ov 7453  df-2nd 8033  df-frecs 8324  df-wrecs 8355  df-recs 8429  df-en 9006  df-card 10010  df-ac 10187
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator