| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zorn2 | Structured version Visualization version GIF version | ||
| Description: Zorn's Lemma of [Monk1] p. 117. This theorem is equivalent to the Axiom of Choice and states that every partially ordered set 𝐴 (with an ordering relation 𝑅) in which every totally ordered subset has an upper bound, contains at least one maximal element. The main proof consists of lemmas zorn2lem1 10425 through zorn2lem7 10431; this final piece mainly changes bound variables to eliminate the hypotheses of zorn2lem7 10431. (Contributed by NM, 6-Apr-1997.) (Revised by Mario Carneiro, 9-May-2015.) |
| Ref | Expression |
|---|---|
| zornn0.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| zorn2 | ⊢ ((𝑅 Po 𝐴 ∧ ∀𝑤((𝑤 ⊆ 𝐴 ∧ 𝑅 Or 𝑤) → ∃𝑥 ∈ 𝐴 ∀𝑧 ∈ 𝑤 (𝑧𝑅𝑥 ∨ 𝑧 = 𝑥))) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zornn0.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 2 | numth3 10399 | . . 3 ⊢ (𝐴 ∈ V → 𝐴 ∈ dom card) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ 𝐴 ∈ dom card |
| 4 | zorn2g 10432 | . 2 ⊢ ((𝐴 ∈ dom card ∧ 𝑅 Po 𝐴 ∧ ∀𝑤((𝑤 ⊆ 𝐴 ∧ 𝑅 Or 𝑤) → ∃𝑥 ∈ 𝐴 ∀𝑧 ∈ 𝑤 (𝑧𝑅𝑥 ∨ 𝑧 = 𝑥))) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦) | |
| 5 | 3, 4 | mp3an1 1450 | 1 ⊢ ((𝑅 Po 𝐴 ∧ ∀𝑤((𝑤 ⊆ 𝐴 ∧ 𝑅 Or 𝑤) → ∃𝑥 ∈ 𝐴 ∀𝑧 ∈ 𝑤 (𝑧𝑅𝑥 ∨ 𝑧 = 𝑥))) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 ∀wal 1538 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 Vcvv 3444 ⊆ wss 3911 class class class wbr 5102 Po wpo 5537 Or wor 5538 dom cdm 5631 cardccrd 9864 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-ac2 10392 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-en 8896 df-card 9868 df-ac 10045 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |