![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zorn2 | Structured version Visualization version GIF version |
Description: Zorn's Lemma of [Monk1] p. 117. This theorem is equivalent to the Axiom of Choice and states that every partially ordered set 𝐴 (with an ordering relation 𝑅) in which every totally ordered subset has an upper bound, contains at least one maximal element. The main proof consists of lemmas zorn2lem1 9655 through zorn2lem7 9661; this final piece mainly changes bound variables to eliminate the hypotheses of zorn2lem7 9661. (Contributed by NM, 6-Apr-1997.) (Revised by Mario Carneiro, 9-May-2015.) |
Ref | Expression |
---|---|
zornn0.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
zorn2 | ⊢ ((𝑅 Po 𝐴 ∧ ∀𝑤((𝑤 ⊆ 𝐴 ∧ 𝑅 Or 𝑤) → ∃𝑥 ∈ 𝐴 ∀𝑧 ∈ 𝑤 (𝑧𝑅𝑥 ∨ 𝑧 = 𝑥))) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zornn0.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | numth3 9629 | . . 3 ⊢ (𝐴 ∈ V → 𝐴 ∈ dom card) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ 𝐴 ∈ dom card |
4 | zorn2g 9662 | . 2 ⊢ ((𝐴 ∈ dom card ∧ 𝑅 Po 𝐴 ∧ ∀𝑤((𝑤 ⊆ 𝐴 ∧ 𝑅 Or 𝑤) → ∃𝑥 ∈ 𝐴 ∀𝑧 ∈ 𝑤 (𝑧𝑅𝑥 ∨ 𝑧 = 𝑥))) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦) | |
5 | 3, 4 | mp3an1 1521 | 1 ⊢ ((𝑅 Po 𝐴 ∧ ∀𝑤((𝑤 ⊆ 𝐴 ∧ 𝑅 Or 𝑤) → ∃𝑥 ∈ 𝐴 ∀𝑧 ∈ 𝑤 (𝑧𝑅𝑥 ∨ 𝑧 = 𝑥))) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 386 ∨ wo 836 ∀wal 1599 ∈ wcel 2107 ∀wral 3090 ∃wrex 3091 Vcvv 3398 ⊆ wss 3792 class class class wbr 4888 Po wpo 5274 Or wor 5275 dom cdm 5357 cardccrd 9096 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5008 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 ax-ac2 9622 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4674 df-int 4713 df-iun 4757 df-br 4889 df-opab 4951 df-mpt 4968 df-tr 4990 df-id 5263 df-eprel 5268 df-po 5276 df-so 5277 df-fr 5316 df-se 5317 df-we 5318 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-pred 5935 df-ord 5981 df-on 5982 df-suc 5984 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-isom 6146 df-riota 6885 df-wrecs 7691 df-recs 7753 df-en 8244 df-card 9100 df-ac 9274 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |