Proof of Theorem 2lgslem3
Step | Hyp | Ref
| Expression |
1 | | nnz 9339 |
. . 3
⊢ (𝑃 ∈ ℕ → 𝑃 ∈
ℤ) |
2 | | lgsdir2lem3 15178 |
. . 3
⊢ ((𝑃 ∈ ℤ ∧ ¬ 2
∥ 𝑃) → (𝑃 mod 8) ∈ ({1, 7} ∪ {3,
5})) |
3 | 1, 2 | sylan 283 |
. 2
⊢ ((𝑃 ∈ ℕ ∧ ¬ 2
∥ 𝑃) → (𝑃 mod 8) ∈ ({1, 7} ∪ {3,
5})) |
4 | | elun 3301 |
. . 3
⊢ ((𝑃 mod 8) ∈ ({1, 7} ∪ {3,
5}) ↔ ((𝑃 mod 8)
∈ {1, 7} ∨ (𝑃 mod
8) ∈ {3, 5})) |
5 | | elpri 3642 |
. . . . . . . 8
⊢ ((𝑃 mod 8) ∈ {1, 7} →
((𝑃 mod 8) = 1 ∨ (𝑃 mod 8) = 7)) |
6 | | 2lgslem2.n |
. . . . . . . . . . . . 13
⊢ 𝑁 = (((𝑃 − 1) / 2) −
(⌊‘(𝑃 /
4))) |
7 | 6 | 2lgslem3a1 15245 |
. . . . . . . . . . . 12
⊢ ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 1) → (𝑁 mod 2) = 0) |
8 | 7 | a1d 22 |
. . . . . . . . . . 11
⊢ ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 1) → (¬ 2
∥ 𝑃 → (𝑁 mod 2) = 0)) |
9 | 8 | expcom 116 |
. . . . . . . . . 10
⊢ ((𝑃 mod 8) = 1 → (𝑃 ∈ ℕ → (¬ 2
∥ 𝑃 → (𝑁 mod 2) = 0))) |
10 | 9 | impd 254 |
. . . . . . . . 9
⊢ ((𝑃 mod 8) = 1 → ((𝑃 ∈ ℕ ∧ ¬ 2
∥ 𝑃) → (𝑁 mod 2) = 0)) |
11 | 6 | 2lgslem3d1 15248 |
. . . . . . . . . . . 12
⊢ ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 7) → (𝑁 mod 2) = 0) |
12 | 11 | a1d 22 |
. . . . . . . . . . 11
⊢ ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 7) → (¬ 2
∥ 𝑃 → (𝑁 mod 2) = 0)) |
13 | 12 | expcom 116 |
. . . . . . . . . 10
⊢ ((𝑃 mod 8) = 7 → (𝑃 ∈ ℕ → (¬ 2
∥ 𝑃 → (𝑁 mod 2) = 0))) |
14 | 13 | impd 254 |
. . . . . . . . 9
⊢ ((𝑃 mod 8) = 7 → ((𝑃 ∈ ℕ ∧ ¬ 2
∥ 𝑃) → (𝑁 mod 2) = 0)) |
15 | 10, 14 | jaoi 717 |
. . . . . . . 8
⊢ (((𝑃 mod 8) = 1 ∨ (𝑃 mod 8) = 7) → ((𝑃 ∈ ℕ ∧ ¬ 2
∥ 𝑃) → (𝑁 mod 2) = 0)) |
16 | 5, 15 | syl 14 |
. . . . . . 7
⊢ ((𝑃 mod 8) ∈ {1, 7} →
((𝑃 ∈ ℕ ∧
¬ 2 ∥ 𝑃) →
(𝑁 mod 2) =
0)) |
17 | 16 | imp 124 |
. . . . . 6
⊢ (((𝑃 mod 8) ∈ {1, 7} ∧
(𝑃 ∈ ℕ ∧
¬ 2 ∥ 𝑃)) →
(𝑁 mod 2) =
0) |
18 | | iftrue 3563 |
. . . . . . 7
⊢ ((𝑃 mod 8) ∈ {1, 7} →
if((𝑃 mod 8) ∈ {1, 7},
0, 1) = 0) |
19 | 18 | adantr 276 |
. . . . . 6
⊢ (((𝑃 mod 8) ∈ {1, 7} ∧
(𝑃 ∈ ℕ ∧
¬ 2 ∥ 𝑃)) →
if((𝑃 mod 8) ∈ {1, 7},
0, 1) = 0) |
20 | 17, 19 | eqtr4d 2229 |
. . . . 5
⊢ (((𝑃 mod 8) ∈ {1, 7} ∧
(𝑃 ∈ ℕ ∧
¬ 2 ∥ 𝑃)) →
(𝑁 mod 2) = if((𝑃 mod 8) ∈ {1, 7}, 0,
1)) |
21 | 20 | ex 115 |
. . . 4
⊢ ((𝑃 mod 8) ∈ {1, 7} →
((𝑃 ∈ ℕ ∧
¬ 2 ∥ 𝑃) →
(𝑁 mod 2) = if((𝑃 mod 8) ∈ {1, 7}, 0,
1))) |
22 | | elpri 3642 |
. . . . 5
⊢ ((𝑃 mod 8) ∈ {3, 5} →
((𝑃 mod 8) = 3 ∨ (𝑃 mod 8) = 5)) |
23 | 6 | 2lgslem3b1 15246 |
. . . . . . . . . . 11
⊢ ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 3) → (𝑁 mod 2) = 1) |
24 | 23 | expcom 116 |
. . . . . . . . . 10
⊢ ((𝑃 mod 8) = 3 → (𝑃 ∈ ℕ → (𝑁 mod 2) = 1)) |
25 | 6 | 2lgslem3c1 15247 |
. . . . . . . . . . 11
⊢ ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 5) → (𝑁 mod 2) = 1) |
26 | 25 | expcom 116 |
. . . . . . . . . 10
⊢ ((𝑃 mod 8) = 5 → (𝑃 ∈ ℕ → (𝑁 mod 2) = 1)) |
27 | 24, 26 | jaoi 717 |
. . . . . . . . 9
⊢ (((𝑃 mod 8) = 3 ∨ (𝑃 mod 8) = 5) → (𝑃 ∈ ℕ → (𝑁 mod 2) = 1)) |
28 | 27 | imp 124 |
. . . . . . . 8
⊢ ((((𝑃 mod 8) = 3 ∨ (𝑃 mod 8) = 5) ∧ 𝑃 ∈ ℕ) → (𝑁 mod 2) = 1) |
29 | | 1re 8020 |
. . . . . . . . . . . . . . . . 17
⊢ 1 ∈
ℝ |
30 | | 1lt3 9156 |
. . . . . . . . . . . . . . . . 17
⊢ 1 <
3 |
31 | 29, 30 | ltneii 8118 |
. . . . . . . . . . . . . . . 16
⊢ 1 ≠
3 |
32 | 31 | nesymi 2410 |
. . . . . . . . . . . . . . 15
⊢ ¬ 3
= 1 |
33 | | 3re 9058 |
. . . . . . . . . . . . . . . . 17
⊢ 3 ∈
ℝ |
34 | | 3lt7 9172 |
. . . . . . . . . . . . . . . . 17
⊢ 3 <
7 |
35 | 33, 34 | ltneii 8118 |
. . . . . . . . . . . . . . . 16
⊢ 3 ≠
7 |
36 | 35 | neii 2366 |
. . . . . . . . . . . . . . 15
⊢ ¬ 3
= 7 |
37 | 32, 36 | pm3.2i 272 |
. . . . . . . . . . . . . 14
⊢ (¬ 3
= 1 ∧ ¬ 3 = 7) |
38 | | eqeq1 2200 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑃 mod 8) = 3 → ((𝑃 mod 8) = 1 ↔ 3 =
1)) |
39 | 38 | notbid 668 |
. . . . . . . . . . . . . . 15
⊢ ((𝑃 mod 8) = 3 → (¬ (𝑃 mod 8) = 1 ↔ ¬ 3 =
1)) |
40 | | eqeq1 2200 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑃 mod 8) = 3 → ((𝑃 mod 8) = 7 ↔ 3 =
7)) |
41 | 40 | notbid 668 |
. . . . . . . . . . . . . . 15
⊢ ((𝑃 mod 8) = 3 → (¬ (𝑃 mod 8) = 7 ↔ ¬ 3 =
7)) |
42 | 39, 41 | anbi12d 473 |
. . . . . . . . . . . . . 14
⊢ ((𝑃 mod 8) = 3 → ((¬
(𝑃 mod 8) = 1 ∧ ¬
(𝑃 mod 8) = 7) ↔
(¬ 3 = 1 ∧ ¬ 3 = 7))) |
43 | 37, 42 | mpbiri 168 |
. . . . . . . . . . . . 13
⊢ ((𝑃 mod 8) = 3 → (¬ (𝑃 mod 8) = 1 ∧ ¬ (𝑃 mod 8) = 7)) |
44 | | 1lt5 9163 |
. . . . . . . . . . . . . . . . 17
⊢ 1 <
5 |
45 | 29, 44 | ltneii 8118 |
. . . . . . . . . . . . . . . 16
⊢ 1 ≠
5 |
46 | 45 | nesymi 2410 |
. . . . . . . . . . . . . . 15
⊢ ¬ 5
= 1 |
47 | | 5re 9063 |
. . . . . . . . . . . . . . . . 17
⊢ 5 ∈
ℝ |
48 | | 5lt7 9170 |
. . . . . . . . . . . . . . . . 17
⊢ 5 <
7 |
49 | 47, 48 | ltneii 8118 |
. . . . . . . . . . . . . . . 16
⊢ 5 ≠
7 |
50 | 49 | neii 2366 |
. . . . . . . . . . . . . . 15
⊢ ¬ 5
= 7 |
51 | 46, 50 | pm3.2i 272 |
. . . . . . . . . . . . . 14
⊢ (¬ 5
= 1 ∧ ¬ 5 = 7) |
52 | | eqeq1 2200 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑃 mod 8) = 5 → ((𝑃 mod 8) = 1 ↔ 5 =
1)) |
53 | 52 | notbid 668 |
. . . . . . . . . . . . . . 15
⊢ ((𝑃 mod 8) = 5 → (¬ (𝑃 mod 8) = 1 ↔ ¬ 5 =
1)) |
54 | | eqeq1 2200 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑃 mod 8) = 5 → ((𝑃 mod 8) = 7 ↔ 5 =
7)) |
55 | 54 | notbid 668 |
. . . . . . . . . . . . . . 15
⊢ ((𝑃 mod 8) = 5 → (¬ (𝑃 mod 8) = 7 ↔ ¬ 5 =
7)) |
56 | 53, 55 | anbi12d 473 |
. . . . . . . . . . . . . 14
⊢ ((𝑃 mod 8) = 5 → ((¬
(𝑃 mod 8) = 1 ∧ ¬
(𝑃 mod 8) = 7) ↔
(¬ 5 = 1 ∧ ¬ 5 = 7))) |
57 | 51, 56 | mpbiri 168 |
. . . . . . . . . . . . 13
⊢ ((𝑃 mod 8) = 5 → (¬ (𝑃 mod 8) = 1 ∧ ¬ (𝑃 mod 8) = 7)) |
58 | 43, 57 | jaoi 717 |
. . . . . . . . . . . 12
⊢ (((𝑃 mod 8) = 3 ∨ (𝑃 mod 8) = 5) → (¬
(𝑃 mod 8) = 1 ∧ ¬
(𝑃 mod 8) =
7)) |
59 | 58 | adantr 276 |
. . . . . . . . . . 11
⊢ ((((𝑃 mod 8) = 3 ∨ (𝑃 mod 8) = 5) ∧ 𝑃 ∈ ℕ) → (¬
(𝑃 mod 8) = 1 ∧ ¬
(𝑃 mod 8) =
7)) |
60 | | ioran 753 |
. . . . . . . . . . 11
⊢ (¬
((𝑃 mod 8) = 1 ∨ (𝑃 mod 8) = 7) ↔ (¬
(𝑃 mod 8) = 1 ∧ ¬
(𝑃 mod 8) =
7)) |
61 | 59, 60 | sylibr 134 |
. . . . . . . . . 10
⊢ ((((𝑃 mod 8) = 3 ∨ (𝑃 mod 8) = 5) ∧ 𝑃 ∈ ℕ) → ¬
((𝑃 mod 8) = 1 ∨ (𝑃 mod 8) = 7)) |
62 | 61, 5 | nsyl 629 |
. . . . . . . . 9
⊢ ((((𝑃 mod 8) = 3 ∨ (𝑃 mod 8) = 5) ∧ 𝑃 ∈ ℕ) → ¬
(𝑃 mod 8) ∈ {1,
7}) |
63 | 62 | iffalsed 3568 |
. . . . . . . 8
⊢ ((((𝑃 mod 8) = 3 ∨ (𝑃 mod 8) = 5) ∧ 𝑃 ∈ ℕ) →
if((𝑃 mod 8) ∈ {1, 7},
0, 1) = 1) |
64 | 28, 63 | eqtr4d 2229 |
. . . . . . 7
⊢ ((((𝑃 mod 8) = 3 ∨ (𝑃 mod 8) = 5) ∧ 𝑃 ∈ ℕ) → (𝑁 mod 2) = if((𝑃 mod 8) ∈ {1, 7}, 0,
1)) |
65 | 64 | a1d 22 |
. . . . . 6
⊢ ((((𝑃 mod 8) = 3 ∨ (𝑃 mod 8) = 5) ∧ 𝑃 ∈ ℕ) → (¬ 2
∥ 𝑃 → (𝑁 mod 2) = if((𝑃 mod 8) ∈ {1, 7}, 0,
1))) |
66 | 65 | expimpd 363 |
. . . . 5
⊢ (((𝑃 mod 8) = 3 ∨ (𝑃 mod 8) = 5) → ((𝑃 ∈ ℕ ∧ ¬ 2
∥ 𝑃) → (𝑁 mod 2) = if((𝑃 mod 8) ∈ {1, 7}, 0,
1))) |
67 | 22, 66 | syl 14 |
. . . 4
⊢ ((𝑃 mod 8) ∈ {3, 5} →
((𝑃 ∈ ℕ ∧
¬ 2 ∥ 𝑃) →
(𝑁 mod 2) = if((𝑃 mod 8) ∈ {1, 7}, 0,
1))) |
68 | 21, 67 | jaoi 717 |
. . 3
⊢ (((𝑃 mod 8) ∈ {1, 7} ∨
(𝑃 mod 8) ∈ {3, 5})
→ ((𝑃 ∈ ℕ
∧ ¬ 2 ∥ 𝑃)
→ (𝑁 mod 2) =
if((𝑃 mod 8) ∈ {1, 7},
0, 1))) |
69 | 4, 68 | sylbi 121 |
. 2
⊢ ((𝑃 mod 8) ∈ ({1, 7} ∪ {3,
5}) → ((𝑃 ∈
ℕ ∧ ¬ 2 ∥ 𝑃) → (𝑁 mod 2) = if((𝑃 mod 8) ∈ {1, 7}, 0,
1))) |
70 | 3, 69 | mpcom 36 |
1
⊢ ((𝑃 ∈ ℕ ∧ ¬ 2
∥ 𝑃) → (𝑁 mod 2) = if((𝑃 mod 8) ∈ {1, 7}, 0,
1)) |