| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bitsp1o | GIF version | ||
| Description: The 𝑀 + 1-th bit of 2𝑁 + 1 is the 𝑀-th bit of 𝑁. (Contributed by Mario Carneiro, 5-Sep-2016.) |
| Ref | Expression |
|---|---|
| bitsp1o | ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝑀 + 1) ∈ (bits‘((2 · 𝑁) + 1)) ↔ 𝑀 ∈ (bits‘𝑁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2z 9442 | . . . . . 6 ⊢ 2 ∈ ℤ | |
| 2 | 1 | a1i 9 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 2 ∈ ℤ) |
| 3 | id 19 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℤ) | |
| 4 | 2, 3 | zmulcld 9543 | . . . 4 ⊢ (𝑁 ∈ ℤ → (2 · 𝑁) ∈ ℤ) |
| 5 | 4 | peano2zd 9540 | . . 3 ⊢ (𝑁 ∈ ℤ → ((2 · 𝑁) + 1) ∈ ℤ) |
| 6 | bitsp1 12428 | . . 3 ⊢ ((((2 · 𝑁) + 1) ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝑀 + 1) ∈ (bits‘((2 · 𝑁) + 1)) ↔ 𝑀 ∈ (bits‘(⌊‘(((2 · 𝑁) + 1) / 2))))) | |
| 7 | 5, 6 | sylan 283 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝑀 + 1) ∈ (bits‘((2 · 𝑁) + 1)) ↔ 𝑀 ∈ (bits‘(⌊‘(((2 · 𝑁) + 1) / 2))))) |
| 8 | 2re 9148 | . . . . . . . . . . . 12 ⊢ 2 ∈ ℝ | |
| 9 | 8 | a1i 9 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ ℤ → 2 ∈ ℝ) |
| 10 | zre 9418 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
| 11 | 9, 10 | remulcld 8145 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℤ → (2 · 𝑁) ∈ ℝ) |
| 12 | 11 | recnd 8143 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℤ → (2 · 𝑁) ∈ ℂ) |
| 13 | 1cnd 8130 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℤ → 1 ∈ ℂ) | |
| 14 | 2cnd 9151 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℤ → 2 ∈ ℂ) | |
| 15 | 2ap0 9171 | . . . . . . . . . 10 ⊢ 2 # 0 | |
| 16 | 15 | a1i 9 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℤ → 2 # 0) |
| 17 | 12, 13, 14, 16 | divdirapd 8944 | . . . . . . . 8 ⊢ (𝑁 ∈ ℤ → (((2 · 𝑁) + 1) / 2) = (((2 · 𝑁) / 2) + (1 / 2))) |
| 18 | zcn 9419 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
| 19 | 18, 14, 16 | divcanap3d 8910 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℤ → ((2 · 𝑁) / 2) = 𝑁) |
| 20 | 19 | oveq1d 5989 | . . . . . . . 8 ⊢ (𝑁 ∈ ℤ → (((2 · 𝑁) / 2) + (1 / 2)) = (𝑁 + (1 / 2))) |
| 21 | 17, 20 | eqtrd 2242 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → (((2 · 𝑁) + 1) / 2) = (𝑁 + (1 / 2))) |
| 22 | 21 | fveq2d 5607 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → (⌊‘(((2 · 𝑁) + 1) / 2)) = (⌊‘(𝑁 + (1 / 2)))) |
| 23 | halfge0 9295 | . . . . . . . 8 ⊢ 0 ≤ (1 / 2) | |
| 24 | halflt1 9296 | . . . . . . . 8 ⊢ (1 / 2) < 1 | |
| 25 | 23, 24 | pm3.2i 272 | . . . . . . 7 ⊢ (0 ≤ (1 / 2) ∧ (1 / 2) < 1) |
| 26 | 1z 9440 | . . . . . . . . 9 ⊢ 1 ∈ ℤ | |
| 27 | 2nn 9240 | . . . . . . . . 9 ⊢ 2 ∈ ℕ | |
| 28 | znq 9787 | . . . . . . . . 9 ⊢ ((1 ∈ ℤ ∧ 2 ∈ ℕ) → (1 / 2) ∈ ℚ) | |
| 29 | 26, 27, 28 | mp2an 426 | . . . . . . . 8 ⊢ (1 / 2) ∈ ℚ |
| 30 | flqbi2 10478 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℤ ∧ (1 / 2) ∈ ℚ) → ((⌊‘(𝑁 + (1 / 2))) = 𝑁 ↔ (0 ≤ (1 / 2) ∧ (1 / 2) < 1))) | |
| 31 | 29, 30 | mpan2 425 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → ((⌊‘(𝑁 + (1 / 2))) = 𝑁 ↔ (0 ≤ (1 / 2) ∧ (1 / 2) < 1))) |
| 32 | 25, 31 | mpbiri 168 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → (⌊‘(𝑁 + (1 / 2))) = 𝑁) |
| 33 | 22, 32 | eqtrd 2242 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (⌊‘(((2 · 𝑁) + 1) / 2)) = 𝑁) |
| 34 | 33 | adantr 276 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (⌊‘(((2 · 𝑁) + 1) / 2)) = 𝑁) |
| 35 | 34 | fveq2d 5607 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (bits‘(⌊‘(((2 · 𝑁) + 1) / 2))) = (bits‘𝑁)) |
| 36 | 35 | eleq2d 2279 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝑀 ∈ (bits‘(⌊‘(((2 · 𝑁) + 1) / 2))) ↔ 𝑀 ∈ (bits‘𝑁))) |
| 37 | 7, 36 | bitrd 188 | 1 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝑀 + 1) ∈ (bits‘((2 · 𝑁) + 1)) ↔ 𝑀 ∈ (bits‘𝑁))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1375 ∈ wcel 2180 class class class wbr 4062 ‘cfv 5294 (class class class)co 5974 ℝcr 7966 0cc0 7967 1c1 7968 + caddc 7970 · cmul 7972 < clt 8149 ≤ cle 8150 # cap 8696 / cdiv 8787 ℕcn 9078 2c2 9129 ℕ0cn0 9337 ℤcz 9414 ℚcq 9782 ⌊cfl 10455 bitscbits 12417 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-iinf 4657 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-mulrcl 8066 ax-addcom 8067 ax-mulcom 8068 ax-addass 8069 ax-mulass 8070 ax-distr 8071 ax-i2m1 8072 ax-0lt1 8073 ax-1rid 8074 ax-0id 8075 ax-rnegex 8076 ax-precex 8077 ax-cnre 8078 ax-pre-ltirr 8079 ax-pre-ltwlin 8080 ax-pre-lttrn 8081 ax-pre-apti 8082 ax-pre-ltadd 8083 ax-pre-mulgt0 8084 ax-pre-mulext 8085 ax-arch 8086 |
| This theorem depends on definitions: df-bi 117 df-dc 839 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-reu 2495 df-rmo 2496 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-if 3583 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-tr 4162 df-id 4361 df-po 4364 df-iso 4365 df-iord 4434 df-on 4436 df-ilim 4437 df-suc 4439 df-iom 4660 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-recs 6421 df-frec 6507 df-pnf 8151 df-mnf 8152 df-xr 8153 df-ltxr 8154 df-le 8155 df-sub 8287 df-neg 8288 df-reap 8690 df-ap 8697 df-div 8788 df-inn 9079 df-2 9137 df-n0 9338 df-z 9415 df-uz 9691 df-q 9783 df-rp 9818 df-fl 10457 df-seqfrec 10637 df-exp 10728 df-bits 12418 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |