| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bitsp1o | GIF version | ||
| Description: The 𝑀 + 1-th bit of 2𝑁 + 1 is the 𝑀-th bit of 𝑁. (Contributed by Mario Carneiro, 5-Sep-2016.) |
| Ref | Expression |
|---|---|
| bitsp1o | ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝑀 + 1) ∈ (bits‘((2 · 𝑁) + 1)) ↔ 𝑀 ∈ (bits‘𝑁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2z 9482 | . . . . . 6 ⊢ 2 ∈ ℤ | |
| 2 | 1 | a1i 9 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 2 ∈ ℤ) |
| 3 | id 19 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℤ) | |
| 4 | 2, 3 | zmulcld 9583 | . . . 4 ⊢ (𝑁 ∈ ℤ → (2 · 𝑁) ∈ ℤ) |
| 5 | 4 | peano2zd 9580 | . . 3 ⊢ (𝑁 ∈ ℤ → ((2 · 𝑁) + 1) ∈ ℤ) |
| 6 | bitsp1 12470 | . . 3 ⊢ ((((2 · 𝑁) + 1) ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝑀 + 1) ∈ (bits‘((2 · 𝑁) + 1)) ↔ 𝑀 ∈ (bits‘(⌊‘(((2 · 𝑁) + 1) / 2))))) | |
| 7 | 5, 6 | sylan 283 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝑀 + 1) ∈ (bits‘((2 · 𝑁) + 1)) ↔ 𝑀 ∈ (bits‘(⌊‘(((2 · 𝑁) + 1) / 2))))) |
| 8 | 2re 9188 | . . . . . . . . . . . 12 ⊢ 2 ∈ ℝ | |
| 9 | 8 | a1i 9 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ ℤ → 2 ∈ ℝ) |
| 10 | zre 9458 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
| 11 | 9, 10 | remulcld 8185 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℤ → (2 · 𝑁) ∈ ℝ) |
| 12 | 11 | recnd 8183 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℤ → (2 · 𝑁) ∈ ℂ) |
| 13 | 1cnd 8170 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℤ → 1 ∈ ℂ) | |
| 14 | 2cnd 9191 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℤ → 2 ∈ ℂ) | |
| 15 | 2ap0 9211 | . . . . . . . . . 10 ⊢ 2 # 0 | |
| 16 | 15 | a1i 9 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℤ → 2 # 0) |
| 17 | 12, 13, 14, 16 | divdirapd 8984 | . . . . . . . 8 ⊢ (𝑁 ∈ ℤ → (((2 · 𝑁) + 1) / 2) = (((2 · 𝑁) / 2) + (1 / 2))) |
| 18 | zcn 9459 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
| 19 | 18, 14, 16 | divcanap3d 8950 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℤ → ((2 · 𝑁) / 2) = 𝑁) |
| 20 | 19 | oveq1d 6022 | . . . . . . . 8 ⊢ (𝑁 ∈ ℤ → (((2 · 𝑁) / 2) + (1 / 2)) = (𝑁 + (1 / 2))) |
| 21 | 17, 20 | eqtrd 2262 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → (((2 · 𝑁) + 1) / 2) = (𝑁 + (1 / 2))) |
| 22 | 21 | fveq2d 5633 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → (⌊‘(((2 · 𝑁) + 1) / 2)) = (⌊‘(𝑁 + (1 / 2)))) |
| 23 | halfge0 9335 | . . . . . . . 8 ⊢ 0 ≤ (1 / 2) | |
| 24 | halflt1 9336 | . . . . . . . 8 ⊢ (1 / 2) < 1 | |
| 25 | 23, 24 | pm3.2i 272 | . . . . . . 7 ⊢ (0 ≤ (1 / 2) ∧ (1 / 2) < 1) |
| 26 | 1z 9480 | . . . . . . . . 9 ⊢ 1 ∈ ℤ | |
| 27 | 2nn 9280 | . . . . . . . . 9 ⊢ 2 ∈ ℕ | |
| 28 | znq 9827 | . . . . . . . . 9 ⊢ ((1 ∈ ℤ ∧ 2 ∈ ℕ) → (1 / 2) ∈ ℚ) | |
| 29 | 26, 27, 28 | mp2an 426 | . . . . . . . 8 ⊢ (1 / 2) ∈ ℚ |
| 30 | flqbi2 10519 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℤ ∧ (1 / 2) ∈ ℚ) → ((⌊‘(𝑁 + (1 / 2))) = 𝑁 ↔ (0 ≤ (1 / 2) ∧ (1 / 2) < 1))) | |
| 31 | 29, 30 | mpan2 425 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → ((⌊‘(𝑁 + (1 / 2))) = 𝑁 ↔ (0 ≤ (1 / 2) ∧ (1 / 2) < 1))) |
| 32 | 25, 31 | mpbiri 168 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → (⌊‘(𝑁 + (1 / 2))) = 𝑁) |
| 33 | 22, 32 | eqtrd 2262 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (⌊‘(((2 · 𝑁) + 1) / 2)) = 𝑁) |
| 34 | 33 | adantr 276 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (⌊‘(((2 · 𝑁) + 1) / 2)) = 𝑁) |
| 35 | 34 | fveq2d 5633 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (bits‘(⌊‘(((2 · 𝑁) + 1) / 2))) = (bits‘𝑁)) |
| 36 | 35 | eleq2d 2299 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝑀 ∈ (bits‘(⌊‘(((2 · 𝑁) + 1) / 2))) ↔ 𝑀 ∈ (bits‘𝑁))) |
| 37 | 7, 36 | bitrd 188 | 1 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝑀 + 1) ∈ (bits‘((2 · 𝑁) + 1)) ↔ 𝑀 ∈ (bits‘𝑁))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 ∈ wcel 2200 class class class wbr 4083 ‘cfv 5318 (class class class)co 6007 ℝcr 8006 0cc0 8007 1c1 8008 + caddc 8010 · cmul 8012 < clt 8189 ≤ cle 8190 # cap 8736 / cdiv 8827 ℕcn 9118 2c2 9169 ℕ0cn0 9377 ℤcz 9454 ℚcq 9822 ⌊cfl 10496 bitscbits 12459 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-mulrcl 8106 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-1rid 8114 ax-0id 8115 ax-rnegex 8116 ax-precex 8117 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-apti 8122 ax-pre-ltadd 8123 ax-pre-mulgt0 8124 ax-pre-mulext 8125 ax-arch 8126 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-po 4387 df-iso 4388 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-recs 6457 df-frec 6543 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-reap 8730 df-ap 8737 df-div 8828 df-inn 9119 df-2 9177 df-n0 9378 df-z 9455 df-uz 9731 df-q 9823 df-rp 9858 df-fl 10498 df-seqfrec 10678 df-exp 10769 df-bits 12460 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |