| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bitsp1o | GIF version | ||
| Description: The 𝑀 + 1-th bit of 2𝑁 + 1 is the 𝑀-th bit of 𝑁. (Contributed by Mario Carneiro, 5-Sep-2016.) |
| Ref | Expression |
|---|---|
| bitsp1o | ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝑀 + 1) ∈ (bits‘((2 · 𝑁) + 1)) ↔ 𝑀 ∈ (bits‘𝑁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2z 9407 | . . . . . 6 ⊢ 2 ∈ ℤ | |
| 2 | 1 | a1i 9 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 2 ∈ ℤ) |
| 3 | id 19 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℤ) | |
| 4 | 2, 3 | zmulcld 9508 | . . . 4 ⊢ (𝑁 ∈ ℤ → (2 · 𝑁) ∈ ℤ) |
| 5 | 4 | peano2zd 9505 | . . 3 ⊢ (𝑁 ∈ ℤ → ((2 · 𝑁) + 1) ∈ ℤ) |
| 6 | bitsp1 12306 | . . 3 ⊢ ((((2 · 𝑁) + 1) ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝑀 + 1) ∈ (bits‘((2 · 𝑁) + 1)) ↔ 𝑀 ∈ (bits‘(⌊‘(((2 · 𝑁) + 1) / 2))))) | |
| 7 | 5, 6 | sylan 283 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝑀 + 1) ∈ (bits‘((2 · 𝑁) + 1)) ↔ 𝑀 ∈ (bits‘(⌊‘(((2 · 𝑁) + 1) / 2))))) |
| 8 | 2re 9113 | . . . . . . . . . . . 12 ⊢ 2 ∈ ℝ | |
| 9 | 8 | a1i 9 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ ℤ → 2 ∈ ℝ) |
| 10 | zre 9383 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
| 11 | 9, 10 | remulcld 8110 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℤ → (2 · 𝑁) ∈ ℝ) |
| 12 | 11 | recnd 8108 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℤ → (2 · 𝑁) ∈ ℂ) |
| 13 | 1cnd 8095 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℤ → 1 ∈ ℂ) | |
| 14 | 2cnd 9116 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℤ → 2 ∈ ℂ) | |
| 15 | 2ap0 9136 | . . . . . . . . . 10 ⊢ 2 # 0 | |
| 16 | 15 | a1i 9 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℤ → 2 # 0) |
| 17 | 12, 13, 14, 16 | divdirapd 8909 | . . . . . . . 8 ⊢ (𝑁 ∈ ℤ → (((2 · 𝑁) + 1) / 2) = (((2 · 𝑁) / 2) + (1 / 2))) |
| 18 | zcn 9384 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
| 19 | 18, 14, 16 | divcanap3d 8875 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℤ → ((2 · 𝑁) / 2) = 𝑁) |
| 20 | 19 | oveq1d 5966 | . . . . . . . 8 ⊢ (𝑁 ∈ ℤ → (((2 · 𝑁) / 2) + (1 / 2)) = (𝑁 + (1 / 2))) |
| 21 | 17, 20 | eqtrd 2239 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → (((2 · 𝑁) + 1) / 2) = (𝑁 + (1 / 2))) |
| 22 | 21 | fveq2d 5587 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → (⌊‘(((2 · 𝑁) + 1) / 2)) = (⌊‘(𝑁 + (1 / 2)))) |
| 23 | halfge0 9260 | . . . . . . . 8 ⊢ 0 ≤ (1 / 2) | |
| 24 | halflt1 9261 | . . . . . . . 8 ⊢ (1 / 2) < 1 | |
| 25 | 23, 24 | pm3.2i 272 | . . . . . . 7 ⊢ (0 ≤ (1 / 2) ∧ (1 / 2) < 1) |
| 26 | 1z 9405 | . . . . . . . . 9 ⊢ 1 ∈ ℤ | |
| 27 | 2nn 9205 | . . . . . . . . 9 ⊢ 2 ∈ ℕ | |
| 28 | znq 9752 | . . . . . . . . 9 ⊢ ((1 ∈ ℤ ∧ 2 ∈ ℕ) → (1 / 2) ∈ ℚ) | |
| 29 | 26, 27, 28 | mp2an 426 | . . . . . . . 8 ⊢ (1 / 2) ∈ ℚ |
| 30 | flqbi2 10441 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℤ ∧ (1 / 2) ∈ ℚ) → ((⌊‘(𝑁 + (1 / 2))) = 𝑁 ↔ (0 ≤ (1 / 2) ∧ (1 / 2) < 1))) | |
| 31 | 29, 30 | mpan2 425 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → ((⌊‘(𝑁 + (1 / 2))) = 𝑁 ↔ (0 ≤ (1 / 2) ∧ (1 / 2) < 1))) |
| 32 | 25, 31 | mpbiri 168 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → (⌊‘(𝑁 + (1 / 2))) = 𝑁) |
| 33 | 22, 32 | eqtrd 2239 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (⌊‘(((2 · 𝑁) + 1) / 2)) = 𝑁) |
| 34 | 33 | adantr 276 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (⌊‘(((2 · 𝑁) + 1) / 2)) = 𝑁) |
| 35 | 34 | fveq2d 5587 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (bits‘(⌊‘(((2 · 𝑁) + 1) / 2))) = (bits‘𝑁)) |
| 36 | 35 | eleq2d 2276 | . 2 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝑀 ∈ (bits‘(⌊‘(((2 · 𝑁) + 1) / 2))) ↔ 𝑀 ∈ (bits‘𝑁))) |
| 37 | 7, 36 | bitrd 188 | 1 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝑀 + 1) ∈ (bits‘((2 · 𝑁) + 1)) ↔ 𝑀 ∈ (bits‘𝑁))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2177 class class class wbr 4047 ‘cfv 5276 (class class class)co 5951 ℝcr 7931 0cc0 7932 1c1 7933 + caddc 7935 · cmul 7937 < clt 8114 ≤ cle 8115 # cap 8661 / cdiv 8752 ℕcn 9043 2c2 9094 ℕ0cn0 9302 ℤcz 9379 ℚcq 9747 ⌊cfl 10418 bitscbits 12295 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-nul 4174 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-iinf 4640 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-mulrcl 8031 ax-addcom 8032 ax-mulcom 8033 ax-addass 8034 ax-mulass 8035 ax-distr 8036 ax-i2m1 8037 ax-0lt1 8038 ax-1rid 8039 ax-0id 8040 ax-rnegex 8041 ax-precex 8042 ax-cnre 8043 ax-pre-ltirr 8044 ax-pre-ltwlin 8045 ax-pre-lttrn 8046 ax-pre-apti 8047 ax-pre-ltadd 8048 ax-pre-mulgt0 8049 ax-pre-mulext 8050 ax-arch 8051 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-if 3573 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-tr 4147 df-id 4344 df-po 4347 df-iso 4348 df-iord 4417 df-on 4419 df-ilim 4420 df-suc 4422 df-iom 4643 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-recs 6398 df-frec 6484 df-pnf 8116 df-mnf 8117 df-xr 8118 df-ltxr 8119 df-le 8120 df-sub 8252 df-neg 8253 df-reap 8655 df-ap 8662 df-div 8753 df-inn 9044 df-2 9102 df-n0 9303 df-z 9380 df-uz 9656 df-q 9748 df-rp 9783 df-fl 10420 df-seqfrec 10600 df-exp 10691 df-bits 12296 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |