| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > divcanap1d | GIF version | ||
| Description: A cancellation law for division. (Contributed by Jim Kingdon, 29-Feb-2020.) |
| Ref | Expression |
|---|---|
| divcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| divcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| divclapd.3 | ⊢ (𝜑 → 𝐵 # 0) |
| Ref | Expression |
|---|---|
| divcanap1d | ⊢ (𝜑 → ((𝐴 / 𝐵) · 𝐵) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | divcld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 3 | divclapd.3 | . 2 ⊢ (𝜑 → 𝐵 # 0) | |
| 4 | divcanap1 8727 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → ((𝐴 / 𝐵) · 𝐵) = 𝐴) | |
| 5 | 1, 2, 3, 4 | syl3anc 1249 | 1 ⊢ (𝜑 → ((𝐴 / 𝐵) · 𝐵) = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 class class class wbr 4034 (class class class)co 5925 ℂcc 7896 0cc0 7898 · cmul 7903 # cap 8627 / cdiv 8718 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7989 ax-resscn 7990 ax-1cn 7991 ax-1re 7992 ax-icn 7993 ax-addcl 7994 ax-addrcl 7995 ax-mulcl 7996 ax-mulrcl 7997 ax-addcom 7998 ax-mulcom 7999 ax-addass 8000 ax-mulass 8001 ax-distr 8002 ax-i2m1 8003 ax-0lt1 8004 ax-1rid 8005 ax-0id 8006 ax-rnegex 8007 ax-precex 8008 ax-cnre 8009 ax-pre-ltirr 8010 ax-pre-ltwlin 8011 ax-pre-lttrn 8012 ax-pre-apti 8013 ax-pre-ltadd 8014 ax-pre-mulgt0 8015 ax-pre-mulext 8016 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-id 4329 df-po 4332 df-iso 4333 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-pnf 8082 df-mnf 8083 df-xr 8084 df-ltxr 8085 df-le 8086 df-sub 8218 df-neg 8219 df-reap 8621 df-ap 8628 df-div 8719 |
| This theorem is referenced by: apdivmuld 8859 ltdiv23 8938 lediv23 8939 recp1lt1 8945 ledivp1 8949 subhalfhalf 9245 xp1d2m1eqxm1d2 9263 div4p1lem1div2 9264 qmulz 9716 iccf1o 10098 bcpasc 10877 resqrexlemcalc1 11198 sqrtdiv 11226 geo2sum 11698 dvdsval2 11974 flodddiv4t2lthalf 12123 dvdsgcdidd 12188 mulgcddvds 12289 qredeq 12291 isprm6 12342 sqrt2irrlem 12356 qmuldeneqnum 12390 hashgcdlem 12433 pcqdiv 12503 pockthlem 12552 4sqlem5 12578 4sqlem12 12598 4sqlem15 12601 znidomb 14292 znrrg 14294 dvcnp2cntop 15021 rpcxplogb 15286 logbgcd1irr 15289 logbgcd1irraplemap 15291 lgslem1 15327 gausslemma2dlem1a 15385 lgsquadlem1 15404 2lgslem1a1 15413 |
| Copyright terms: Public domain | W3C validator |