ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gausslemma2dlem4 Unicode version

Theorem gausslemma2dlem4 15272
Description: Lemma 4 for gausslemma2d 15277. (Contributed by AV, 16-Jun-2021.)
Hypotheses
Ref Expression
gausslemma2d.p  |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )
gausslemma2d.h  |-  H  =  ( ( P  - 
1 )  /  2
)
gausslemma2d.r  |-  R  =  ( x  e.  ( 1 ... H ) 
|->  if ( ( x  x.  2 )  < 
( P  /  2
) ,  ( x  x.  2 ) ,  ( P  -  (
x  x.  2 ) ) ) )
gausslemma2d.m  |-  M  =  ( |_ `  ( P  /  4 ) )
Assertion
Ref Expression
gausslemma2dlem4  |-  ( ph  ->  ( ! `  H
)  =  ( prod_
k  e.  ( 1 ... M ) ( R `  k )  x.  prod_ k  e.  ( ( M  +  1 ) ... H ) ( R `  k
) ) )
Distinct variable groups:    x, H    x, P    ph, x    k, H    R, k    ph, k    x, M, k    P, k
Allowed substitution hint:    R( x)

Proof of Theorem gausslemma2dlem4
StepHypRef Expression
1 gausslemma2d.p . . 3  |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )
2 gausslemma2d.h . . 3  |-  H  =  ( ( P  - 
1 )  /  2
)
3 gausslemma2d.r . . 3  |-  R  =  ( x  e.  ( 1 ... H ) 
|->  if ( ( x  x.  2 )  < 
( P  /  2
) ,  ( x  x.  2 ) ,  ( P  -  (
x  x.  2 ) ) ) )
41, 2, 3gausslemma2dlem1 15269 . 2  |-  ( ph  ->  ( ! `  H
)  =  prod_ k  e.  ( 1 ... H
) ( R `  k ) )
5 gausslemma2d.m . . . . . 6  |-  M  =  ( |_ `  ( P  /  4 ) )
6 3lt4 9160 . . . . . . . 8  |-  3  <  4
7 breq1 4036 . . . . . . . 8  |-  ( P  =  3  ->  ( P  <  4  <->  3  <  4 ) )
86, 7mpbiri 168 . . . . . . 7  |-  ( P  =  3  ->  P  <  4 )
9 3nn0 9264 . . . . . . . . 9  |-  3  e.  NN0
10 eleq1 2259 . . . . . . . . 9  |-  ( P  =  3  ->  ( P  e.  NN0  <->  3  e.  NN0 ) )
119, 10mpbiri 168 . . . . . . . 8  |-  ( P  =  3  ->  P  e.  NN0 )
12 4nn 9151 . . . . . . . 8  |-  4  e.  NN
13 divfl0 10371 . . . . . . . 8  |-  ( ( P  e.  NN0  /\  4  e.  NN )  ->  ( P  <  4  <->  ( |_ `  ( P  /  4 ) )  =  0 ) )
1411, 12, 13sylancl 413 . . . . . . 7  |-  ( P  =  3  ->  ( P  <  4  <->  ( |_ `  ( P  /  4
) )  =  0 ) )
158, 14mpbid 147 . . . . . 6  |-  ( P  =  3  ->  ( |_ `  ( P  / 
4 ) )  =  0 )
165, 15eqtrid 2241 . . . . 5  |-  ( P  =  3  ->  M  =  0 )
17 oveq2 5930 . . . . . . . . . . . 12  |-  ( M  =  0  ->  (
1 ... M )  =  ( 1 ... 0
) )
1817adantr 276 . . . . . . . . . . 11  |-  ( ( M  =  0  /\ 
ph )  ->  (
1 ... M )  =  ( 1 ... 0
) )
19 fz10 10118 . . . . . . . . . . 11  |-  ( 1 ... 0 )  =  (/)
2018, 19eqtrdi 2245 . . . . . . . . . 10  |-  ( ( M  =  0  /\ 
ph )  ->  (
1 ... M )  =  (/) )
2120prodeq1d 11713 . . . . . . . . 9  |-  ( ( M  =  0  /\ 
ph )  ->  prod_ k  e.  ( 1 ... M ) ( R `
 k )  = 
prod_ k  e.  (/)  ( R `
 k ) )
22 prod0 11734 . . . . . . . . 9  |-  prod_ k  e.  (/)  ( R `  k )  =  1
2321, 22eqtrdi 2245 . . . . . . . 8  |-  ( ( M  =  0  /\ 
ph )  ->  prod_ k  e.  ( 1 ... M ) ( R `
 k )  =  1 )
24 oveq1 5929 . . . . . . . . . . . 12  |-  ( M  =  0  ->  ( M  +  1 )  =  ( 0  +  1 ) )
2524adantr 276 . . . . . . . . . . 11  |-  ( ( M  =  0  /\ 
ph )  ->  ( M  +  1 )  =  ( 0  +  1 ) )
26 0p1e1 9101 . . . . . . . . . . 11  |-  ( 0  +  1 )  =  1
2725, 26eqtrdi 2245 . . . . . . . . . 10  |-  ( ( M  =  0  /\ 
ph )  ->  ( M  +  1 )  =  1 )
2827oveq1d 5937 . . . . . . . . 9  |-  ( ( M  =  0  /\ 
ph )  ->  (
( M  +  1 ) ... H )  =  ( 1 ... H ) )
2928prodeq1d 11713 . . . . . . . 8  |-  ( ( M  =  0  /\ 
ph )  ->  prod_ k  e.  ( ( M  +  1 ) ... H ) ( R `
 k )  = 
prod_ k  e.  (
1 ... H ) ( R `  k ) )
3023, 29oveq12d 5940 . . . . . . 7  |-  ( ( M  =  0  /\ 
ph )  ->  ( prod_ k  e.  ( 1 ... M ) ( R `  k )  x.  prod_ k  e.  ( ( M  +  1 ) ... H ) ( R `  k
) )  =  ( 1  x.  prod_ k  e.  ( 1 ... H
) ( R `  k ) ) )
31 1zzd 9350 . . . . . . . . . . 11  |-  ( ph  ->  1  e.  ZZ )
321, 2gausslemma2dlem0b 15258 . . . . . . . . . . . 12  |-  ( ph  ->  H  e.  NN )
3332nnzd 9444 . . . . . . . . . . 11  |-  ( ph  ->  H  e.  ZZ )
3431, 33fzfigd 10508 . . . . . . . . . 10  |-  ( ph  ->  ( 1 ... H
)  e.  Fin )
3534adantl 277 . . . . . . . . 9  |-  ( ( M  =  0  /\ 
ph )  ->  (
1 ... H )  e. 
Fin )
36 oveq1 5929 . . . . . . . . . . . . . . 15  |-  ( x  =  k  ->  (
x  x.  2 )  =  ( k  x.  2 ) )
3736breq1d 4043 . . . . . . . . . . . . . 14  |-  ( x  =  k  ->  (
( x  x.  2 )  <  ( P  /  2 )  <->  ( k  x.  2 )  <  ( P  /  2 ) ) )
3836oveq2d 5938 . . . . . . . . . . . . . 14  |-  ( x  =  k  ->  ( P  -  ( x  x.  2 ) )  =  ( P  -  (
k  x.  2 ) ) )
3937, 36, 38ifbieq12d 3587 . . . . . . . . . . . . 13  |-  ( x  =  k  ->  if ( ( x  x.  2 )  <  ( P  /  2 ) ,  ( x  x.  2 ) ,  ( P  -  ( x  x.  2 ) ) )  =  if ( ( k  x.  2 )  <  ( P  / 
2 ) ,  ( k  x.  2 ) ,  ( P  -  ( k  x.  2 ) ) ) )
40 simpr 110 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( 1 ... H
) )  ->  k  e.  ( 1 ... H
) )
4140elfzelzd 10098 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  ( 1 ... H
) )  ->  k  e.  ZZ )
42 2z 9351 . . . . . . . . . . . . . . . 16  |-  2  e.  ZZ
4342a1i 9 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  ( 1 ... H
) )  ->  2  e.  ZZ )
4441, 43zmulcld 9451 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  ( 1 ... H
) )  ->  (
k  x.  2 )  e.  ZZ )
451eldifad 3168 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  P  e.  Prime )
46 prmz 12255 . . . . . . . . . . . . . . . . 17  |-  ( P  e.  Prime  ->  P  e.  ZZ )
4745, 46syl 14 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  P  e.  ZZ )
4847adantr 276 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  ( 1 ... H
) )  ->  P  e.  ZZ )
4948, 44zsubcld 9450 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  ( 1 ... H
) )  ->  ( P  -  ( k  x.  2 ) )  e.  ZZ )
50 zq 9697 . . . . . . . . . . . . . . . 16  |-  ( ( k  x.  2 )  e.  ZZ  ->  (
k  x.  2 )  e.  QQ )
5144, 50syl 14 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  ( 1 ... H
) )  ->  (
k  x.  2 )  e.  QQ )
52 2nn 9149 . . . . . . . . . . . . . . . . 17  |-  2  e.  NN
53 znq 9695 . . . . . . . . . . . . . . . . 17  |-  ( ( P  e.  ZZ  /\  2  e.  NN )  ->  ( P  /  2
)  e.  QQ )
5447, 52, 53sylancl 413 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( P  /  2
)  e.  QQ )
5554adantr 276 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  ( 1 ... H
) )  ->  ( P  /  2 )  e.  QQ )
56 qdclt 10321 . . . . . . . . . . . . . . 15  |-  ( ( ( k  x.  2 )  e.  QQ  /\  ( P  /  2
)  e.  QQ )  -> DECID 
( k  x.  2 )  <  ( P  /  2 ) )
5751, 55, 56syl2anc 411 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  ( 1 ... H
) )  -> DECID  ( k  x.  2 )  <  ( P  /  2 ) )
5844, 49, 57ifcldcd 3597 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  ( 1 ... H
) )  ->  if ( ( k  x.  2 )  <  ( P  /  2 ) ,  ( k  x.  2 ) ,  ( P  -  ( k  x.  2 ) ) )  e.  ZZ )
593, 39, 40, 58fvmptd3 5655 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( 1 ... H
) )  ->  ( R `  k )  =  if ( ( k  x.  2 )  < 
( P  /  2
) ,  ( k  x.  2 ) ,  ( P  -  (
k  x.  2 ) ) ) )
6059, 58eqeltrd 2273 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( 1 ... H
) )  ->  ( R `  k )  e.  ZZ )
6160zcnd 9446 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( 1 ... H
) )  ->  ( R `  k )  e.  CC )
6261adantll 476 . . . . . . . . 9  |-  ( ( ( M  =  0  /\  ph )  /\  k  e.  ( 1 ... H ) )  ->  ( R `  k )  e.  CC )
6335, 62fprodcl 11756 . . . . . . . 8  |-  ( ( M  =  0  /\ 
ph )  ->  prod_ k  e.  ( 1 ... H ) ( R `
 k )  e.  CC )
6463mullidd 8042 . . . . . . 7  |-  ( ( M  =  0  /\ 
ph )  ->  (
1  x.  prod_ k  e.  ( 1 ... H
) ( R `  k ) )  = 
prod_ k  e.  (
1 ... H ) ( R `  k ) )
6530, 64eqtr2d 2230 . . . . . 6  |-  ( ( M  =  0  /\ 
ph )  ->  prod_ k  e.  ( 1 ... H ) ( R `
 k )  =  ( prod_ k  e.  ( 1 ... M ) ( R `  k
)  x.  prod_ k  e.  ( ( M  + 
1 ) ... H
) ( R `  k ) ) )
6665ex 115 . . . . 5  |-  ( M  =  0  ->  ( ph  ->  prod_ k  e.  ( 1 ... H ) ( R `  k
)  =  ( prod_
k  e.  ( 1 ... M ) ( R `  k )  x.  prod_ k  e.  ( ( M  +  1 ) ... H ) ( R `  k
) ) ) )
6716, 66syl 14 . . . 4  |-  ( P  =  3  ->  ( ph  ->  prod_ k  e.  ( 1 ... H ) ( R `  k
)  =  ( prod_
k  e.  ( 1 ... M ) ( R `  k )  x.  prod_ k  e.  ( ( M  +  1 ) ... H ) ( R `  k
) ) ) )
6867impcom 125 . . 3  |-  ( (
ph  /\  P  = 
3 )  ->  prod_ k  e.  ( 1 ... H ) ( R `
 k )  =  ( prod_ k  e.  ( 1 ... M ) ( R `  k
)  x.  prod_ k  e.  ( ( M  + 
1 ) ... H
) ( R `  k ) ) )
691, 5gausslemma2dlem0d 15260 . . . . . . . . 9  |-  ( ph  ->  M  e.  NN0 )
7069nn0red 9300 . . . . . . . 8  |-  ( ph  ->  M  e.  RR )
7170ltp1d 8954 . . . . . . 7  |-  ( ph  ->  M  <  ( M  +  1 ) )
72 fzdisj 10124 . . . . . . 7  |-  ( M  <  ( M  + 
1 )  ->  (
( 1 ... M
)  i^i  ( ( M  +  1 ) ... H ) )  =  (/) )
7371, 72syl 14 . . . . . 6  |-  ( ph  ->  ( ( 1 ... M )  i^i  (
( M  +  1 ) ... H ) )  =  (/) )
7473adantl 277 . . . . 5  |-  ( ( P  e.  ( ZZ>= ` 
5 )  /\  ph )  ->  ( ( 1 ... M )  i^i  ( ( M  + 
1 ) ... H
) )  =  (/) )
75 eluzelz 9607 . . . . . . . . . . . . . . 15  |-  ( P  e.  ( ZZ>= `  5
)  ->  P  e.  ZZ )
76 znq 9695 . . . . . . . . . . . . . . 15  |-  ( ( P  e.  ZZ  /\  4  e.  NN )  ->  ( P  /  4
)  e.  QQ )
7775, 12, 76sylancl 413 . . . . . . . . . . . . . 14  |-  ( P  e.  ( ZZ>= `  5
)  ->  ( P  /  4 )  e.  QQ )
7877flqcld 10352 . . . . . . . . . . . . 13  |-  ( P  e.  ( ZZ>= `  5
)  ->  ( |_ `  ( P  /  4
) )  e.  ZZ )
79 nnrp 9735 . . . . . . . . . . . . . . . 16  |-  ( 4  e.  NN  ->  4  e.  RR+ )
8012, 79ax-mp 5 . . . . . . . . . . . . . . 15  |-  4  e.  RR+
81 eluzelre 9608 . . . . . . . . . . . . . . 15  |-  ( P  e.  ( ZZ>= `  5
)  ->  P  e.  RR )
82 eluz2 9604 . . . . . . . . . . . . . . . 16  |-  ( P  e.  ( ZZ>= `  5
)  <->  ( 5  e.  ZZ  /\  P  e.  ZZ  /\  5  <_  P ) )
83 4lt5 9163 . . . . . . . . . . . . . . . . . 18  |-  4  <  5
84 4re 9064 . . . . . . . . . . . . . . . . . . 19  |-  4  e.  RR
85 5re 9066 . . . . . . . . . . . . . . . . . . . 20  |-  5  e.  RR
8685a1i 9 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 5  e.  ZZ  /\  P  e.  ZZ )  ->  5  e.  RR )
87 zre 9327 . . . . . . . . . . . . . . . . . . . 20  |-  ( P  e.  ZZ  ->  P  e.  RR )
8887adantl 277 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 5  e.  ZZ  /\  P  e.  ZZ )  ->  P  e.  RR )
89 ltleletr 8106 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 4  e.  RR  /\  5  e.  RR  /\  P  e.  RR )  ->  (
( 4  <  5  /\  5  <_  P )  ->  4  <_  P
) )
9084, 86, 88, 89mp3an2i 1353 . . . . . . . . . . . . . . . . . 18  |-  ( ( 5  e.  ZZ  /\  P  e.  ZZ )  ->  ( ( 4  <  5  /\  5  <_  P )  ->  4  <_  P ) )
9183, 90mpani 430 . . . . . . . . . . . . . . . . 17  |-  ( ( 5  e.  ZZ  /\  P  e.  ZZ )  ->  ( 5  <_  P  ->  4  <_  P )
)
92913impia 1202 . . . . . . . . . . . . . . . 16  |-  ( ( 5  e.  ZZ  /\  P  e.  ZZ  /\  5  <_  P )  ->  4  <_  P )
9382, 92sylbi 121 . . . . . . . . . . . . . . 15  |-  ( P  e.  ( ZZ>= `  5
)  ->  4  <_  P )
94 divge1 9795 . . . . . . . . . . . . . . 15  |-  ( ( 4  e.  RR+  /\  P  e.  RR  /\  4  <_  P )  ->  1  <_  ( P  /  4
) )
9580, 81, 93, 94mp3an2i 1353 . . . . . . . . . . . . . 14  |-  ( P  e.  ( ZZ>= `  5
)  ->  1  <_  ( P  /  4 ) )
96 1zzd 9350 . . . . . . . . . . . . . . 15  |-  ( P  e.  ( ZZ>= `  5
)  ->  1  e.  ZZ )
97 flqge 10357 . . . . . . . . . . . . . . 15  |-  ( ( ( P  /  4
)  e.  QQ  /\  1  e.  ZZ )  ->  ( 1  <_  ( P  /  4 )  <->  1  <_  ( |_ `  ( P  /  4 ) ) ) )
9877, 96, 97syl2anc 411 . . . . . . . . . . . . . 14  |-  ( P  e.  ( ZZ>= `  5
)  ->  ( 1  <_  ( P  / 
4 )  <->  1  <_  ( |_ `  ( P  /  4 ) ) ) )
9995, 98mpbid 147 . . . . . . . . . . . . 13  |-  ( P  e.  ( ZZ>= `  5
)  ->  1  <_  ( |_ `  ( P  /  4 ) ) )
100 elnnz1 9346 . . . . . . . . . . . . 13  |-  ( ( |_ `  ( P  /  4 ) )  e.  NN  <->  ( ( |_ `  ( P  / 
4 ) )  e.  ZZ  /\  1  <_ 
( |_ `  ( P  /  4 ) ) ) )
10178, 99, 100sylanbrc 417 . . . . . . . . . . . 12  |-  ( P  e.  ( ZZ>= `  5
)  ->  ( |_ `  ( P  /  4
) )  e.  NN )
102101adantl 277 . . . . . . . . . . 11  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  P  e.  (
ZZ>= `  5 ) )  ->  ( |_ `  ( P  /  4
) )  e.  NN )
103 oddprm 12404 . . . . . . . . . . . 12  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( P  - 
1 )  /  2
)  e.  NN )
104103adantr 276 . . . . . . . . . . 11  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  P  e.  (
ZZ>= `  5 ) )  ->  ( ( P  -  1 )  / 
2 )  e.  NN )
105 eldifi 3285 . . . . . . . . . . . . . 14  |-  ( P  e.  ( Prime  \  {
2 } )  ->  P  e.  Prime )
106 prmuz2 12275 . . . . . . . . . . . . . 14  |-  ( P  e.  Prime  ->  P  e.  ( ZZ>= `  2 )
)
107105, 106syl 14 . . . . . . . . . . . . 13  |-  ( P  e.  ( Prime  \  {
2 } )  ->  P  e.  ( ZZ>= ` 
2 ) )
108107adantr 276 . . . . . . . . . . . 12  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  P  e.  (
ZZ>= `  5 ) )  ->  P  e.  (
ZZ>= `  2 ) )
109 fldiv4lem1div2uz2 10381 . . . . . . . . . . . 12  |-  ( P  e.  ( ZZ>= `  2
)  ->  ( |_ `  ( P  /  4
) )  <_  (
( P  -  1 )  /  2 ) )
110108, 109syl 14 . . . . . . . . . . 11  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  P  e.  (
ZZ>= `  5 ) )  ->  ( |_ `  ( P  /  4
) )  <_  (
( P  -  1 )  /  2 ) )
111102, 104, 1103jca 1179 . . . . . . . . . 10  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  P  e.  (
ZZ>= `  5 ) )  ->  ( ( |_
`  ( P  / 
4 ) )  e.  NN  /\  ( ( P  -  1 )  /  2 )  e.  NN  /\  ( |_
`  ( P  / 
4 ) )  <_ 
( ( P  - 
1 )  /  2
) ) )
112111ex 115 . . . . . . . . 9  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( P  e.  (
ZZ>= `  5 )  -> 
( ( |_ `  ( P  /  4
) )  e.  NN  /\  ( ( P  - 
1 )  /  2
)  e.  NN  /\  ( |_ `  ( P  /  4 ) )  <_  ( ( P  -  1 )  / 
2 ) ) ) )
1131, 112syl 14 . . . . . . . 8  |-  ( ph  ->  ( P  e.  (
ZZ>= `  5 )  -> 
( ( |_ `  ( P  /  4
) )  e.  NN  /\  ( ( P  - 
1 )  /  2
)  e.  NN  /\  ( |_ `  ( P  /  4 ) )  <_  ( ( P  -  1 )  / 
2 ) ) ) )
114113impcom 125 . . . . . . 7  |-  ( ( P  e.  ( ZZ>= ` 
5 )  /\  ph )  ->  ( ( |_
`  ( P  / 
4 ) )  e.  NN  /\  ( ( P  -  1 )  /  2 )  e.  NN  /\  ( |_
`  ( P  / 
4 ) )  <_ 
( ( P  - 
1 )  /  2
) ) )
1152oveq2i 5933 . . . . . . . . 9  |-  ( 1 ... H )  =  ( 1 ... (
( P  -  1 )  /  2 ) )
1165, 115eleq12i 2264 . . . . . . . 8  |-  ( M  e.  ( 1 ... H )  <->  ( |_ `  ( P  /  4
) )  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) )
117 elfz1b 10162 . . . . . . . 8  |-  ( ( |_ `  ( P  /  4 ) )  e.  ( 1 ... ( ( P  - 
1 )  /  2
) )  <->  ( ( |_ `  ( P  / 
4 ) )  e.  NN  /\  ( ( P  -  1 )  /  2 )  e.  NN  /\  ( |_
`  ( P  / 
4 ) )  <_ 
( ( P  - 
1 )  /  2
) ) )
118116, 117bitri 184 . . . . . . 7  |-  ( M  e.  ( 1 ... H )  <->  ( ( |_ `  ( P  / 
4 ) )  e.  NN  /\  ( ( P  -  1 )  /  2 )  e.  NN  /\  ( |_
`  ( P  / 
4 ) )  <_ 
( ( P  - 
1 )  /  2
) ) )
119114, 118sylibr 134 . . . . . 6  |-  ( ( P  e.  ( ZZ>= ` 
5 )  /\  ph )  ->  M  e.  ( 1 ... H ) )
120 fzsplit 10123 . . . . . 6  |-  ( M  e.  ( 1 ... H )  ->  (
1 ... H )  =  ( ( 1 ... M )  u.  (
( M  +  1 ) ... H ) ) )
121119, 120syl 14 . . . . 5  |-  ( ( P  e.  ( ZZ>= ` 
5 )  /\  ph )  ->  ( 1 ... H )  =  ( ( 1 ... M
)  u.  ( ( M  +  1 ) ... H ) ) )
12234adantl 277 . . . . 5  |-  ( ( P  e.  ( ZZ>= ` 
5 )  /\  ph )  ->  ( 1 ... H )  e.  Fin )
12361adantll 476 . . . . 5  |-  ( ( ( P  e.  (
ZZ>= `  5 )  /\  ph )  /\  k  e.  ( 1 ... H
) )  ->  ( R `  k )  e.  CC )
12474, 121, 122, 123fprodsplit 11746 . . . 4  |-  ( ( P  e.  ( ZZ>= ` 
5 )  /\  ph )  ->  prod_ k  e.  ( 1 ... H ) ( R `  k
)  =  ( prod_
k  e.  ( 1 ... M ) ( R `  k )  x.  prod_ k  e.  ( ( M  +  1 ) ... H ) ( R `  k
) ) )
125124ancoms 268 . . 3  |-  ( (
ph  /\  P  e.  ( ZZ>= `  5 )
)  ->  prod_ k  e.  ( 1 ... H
) ( R `  k )  =  (
prod_ k  e.  (
1 ... M ) ( R `  k )  x.  prod_ k  e.  ( ( M  +  1 ) ... H ) ( R `  k
) ) )
126 2re 9057 . . . . . . 7  |-  2  e.  RR
127126a1i 9 . . . . . 6  |-  ( ph  ->  2  e.  RR )
128 oddprmgt2 12278 . . . . . . 7  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
2  <  P )
1291, 128syl 14 . . . . . 6  |-  ( ph  ->  2  <  P )
130127, 129gtned 8137 . . . . 5  |-  ( ph  ->  P  =/=  2 )
131130neneqd 2388 . . . 4  |-  ( ph  ->  -.  P  =  2 )
132 prm23ge5 12409 . . . . . . 7  |-  ( P  e.  Prime  ->  ( P  =  2  \/  P  =  3  \/  P  e.  ( ZZ>= `  5 )
) )
13345, 132syl 14 . . . . . 6  |-  ( ph  ->  ( P  =  2  \/  P  =  3  \/  P  e.  (
ZZ>= `  5 ) ) )
134 3orass 983 . . . . . 6  |-  ( ( P  =  2  \/  P  =  3  \/  P  e.  ( ZZ>= ` 
5 ) )  <->  ( P  =  2  \/  ( P  =  3  \/  P  e.  ( ZZ>= ` 
5 ) ) ) )
135133, 134sylib 122 . . . . 5  |-  ( ph  ->  ( P  =  2  \/  ( P  =  3  \/  P  e.  ( ZZ>= `  5 )
) ) )
136135ord 725 . . . 4  |-  ( ph  ->  ( -.  P  =  2  ->  ( P  =  3  \/  P  e.  ( ZZ>= `  5 )
) ) )
137131, 136mpd 13 . . 3  |-  ( ph  ->  ( P  =  3  \/  P  e.  (
ZZ>= `  5 ) ) )
13868, 125, 137mpjaodan 799 . 2  |-  ( ph  ->  prod_ k  e.  ( 1 ... H ) ( R `  k
)  =  ( prod_
k  e.  ( 1 ... M ) ( R `  k )  x.  prod_ k  e.  ( ( M  +  1 ) ... H ) ( R `  k
) ) )
1394, 138eqtrd 2229 1  |-  ( ph  ->  ( ! `  H
)  =  ( prod_
k  e.  ( 1 ... M ) ( R `  k )  x.  prod_ k  e.  ( ( M  +  1 ) ... H ) ( R `  k
) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709  DECID wdc 835    \/ w3o 979    /\ w3a 980    = wceq 1364    e. wcel 2167    \ cdif 3154    u. cun 3155    i^i cin 3156   (/)c0 3450   ifcif 3561   {csn 3622   class class class wbr 4033    |-> cmpt 4094   ` cfv 5258  (class class class)co 5922   Fincfn 6799   CCcc 7875   RRcr 7876   0cc0 7877   1c1 7878    + caddc 7880    x. cmul 7882    < clt 8059    <_ cle 8060    - cmin 8195    / cdiv 8696   NNcn 8987   2c2 9038   3c3 9039   4c4 9040   5c5 9041   NN0cn0 9246   ZZcz 9323   ZZ>=cuz 9598   QQcq 9690   RR+crp 9725   ...cfz 10080   |_cfl 10343   !cfa 10802   prod_cprod 11699   Primecprime 12251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7968  ax-resscn 7969  ax-1cn 7970  ax-1re 7971  ax-icn 7972  ax-addcl 7973  ax-addrcl 7974  ax-mulcl 7975  ax-mulrcl 7976  ax-addcom 7977  ax-mulcom 7978  ax-addass 7979  ax-mulass 7980  ax-distr 7981  ax-i2m1 7982  ax-0lt1 7983  ax-1rid 7984  ax-0id 7985  ax-rnegex 7986  ax-precex 7987  ax-cnre 7988  ax-pre-ltirr 7989  ax-pre-ltwlin 7990  ax-pre-lttrn 7991  ax-pre-apti 7992  ax-pre-ltadd 7993  ax-pre-mulgt0 7994  ax-pre-mulext 7995  ax-arch 7996  ax-caucvg 7997
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-xor 1387  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-tp 3630  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-frec 6449  df-1o 6474  df-2o 6475  df-oadd 6478  df-er 6592  df-en 6800  df-dom 6801  df-fin 6802  df-pnf 8061  df-mnf 8062  df-xr 8063  df-ltxr 8064  df-le 8065  df-sub 8197  df-neg 8198  df-reap 8599  df-ap 8606  df-div 8697  df-inn 8988  df-2 9046  df-3 9047  df-4 9048  df-5 9049  df-n0 9247  df-z 9324  df-uz 9599  df-q 9691  df-rp 9726  df-ioo 9964  df-fz 10081  df-fzo 10215  df-fl 10345  df-mod 10400  df-seqfrec 10525  df-exp 10616  df-fac 10803  df-ihash 10853  df-cj 10992  df-re 10993  df-im 10994  df-rsqrt 11148  df-abs 11149  df-clim 11428  df-proddc 11700  df-dvds 11937  df-prm 12252
This theorem is referenced by:  gausslemma2dlem6  15275
  Copyright terms: Public domain W3C validator