| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fldiv4lem1div2uz2 | GIF version | ||
| Description: The floor of an integer greater than 1, divided by 4 is less than or equal to the half of the integer minus 1. (Contributed by AV, 5-Jul-2021.) (Proof shortened by AV, 9-Jul-2022.) |
| Ref | Expression |
|---|---|
| fldiv4lem1div2uz2 | ⊢ (𝑁 ∈ (ℤ≥‘2) → (⌊‘(𝑁 / 4)) ≤ ((𝑁 − 1) / 2)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzelz 9739 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑁 ∈ ℤ) | |
| 2 | 4nn 9282 | . . . . 5 ⊢ 4 ∈ ℕ | |
| 3 | znq 9827 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 4 ∈ ℕ) → (𝑁 / 4) ∈ ℚ) | |
| 4 | 1, 2, 3 | sylancl 413 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑁 / 4) ∈ ℚ) |
| 5 | 4 | flqcld 10505 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘2) → (⌊‘(𝑁 / 4)) ∈ ℤ) |
| 6 | 5 | zred 9577 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘2) → (⌊‘(𝑁 / 4)) ∈ ℝ) |
| 7 | eluzelre 9740 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑁 ∈ ℝ) | |
| 8 | 2 | a1i 9 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘2) → 4 ∈ ℕ) |
| 9 | 7, 8 | nndivred 9168 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑁 / 4) ∈ ℝ) |
| 10 | peano2rem 8421 | . . . 4 ⊢ (𝑁 ∈ ℝ → (𝑁 − 1) ∈ ℝ) | |
| 11 | 7, 10 | syl 14 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑁 − 1) ∈ ℝ) |
| 12 | 11 | rehalfcld 9366 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘2) → ((𝑁 − 1) / 2) ∈ ℝ) |
| 13 | flqle 10506 | . . 3 ⊢ ((𝑁 / 4) ∈ ℚ → (⌊‘(𝑁 / 4)) ≤ (𝑁 / 4)) | |
| 14 | 4, 13 | syl 14 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘2) → (⌊‘(𝑁 / 4)) ≤ (𝑁 / 4)) |
| 15 | 1red 8169 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘2) → 1 ∈ ℝ) | |
| 16 | zre 9458 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
| 17 | rehalfcl 9346 | . . . . 5 ⊢ (𝑁 ∈ ℝ → (𝑁 / 2) ∈ ℝ) | |
| 18 | 1, 16, 17 | 3syl 17 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑁 / 2) ∈ ℝ) |
| 19 | 2rp 9862 | . . . . . 6 ⊢ 2 ∈ ℝ+ | |
| 20 | eluzle 9742 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘2) → 2 ≤ 𝑁) | |
| 21 | divge1 9927 | . . . . . 6 ⊢ ((2 ∈ ℝ+ ∧ 𝑁 ∈ ℝ ∧ 2 ≤ 𝑁) → 1 ≤ (𝑁 / 2)) | |
| 22 | 19, 7, 20, 21 | mp3an2i 1376 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘2) → 1 ≤ (𝑁 / 2)) |
| 23 | eluzelcn 9741 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑁 ∈ ℂ) | |
| 24 | subhalfhalf 9354 | . . . . . 6 ⊢ (𝑁 ∈ ℂ → (𝑁 − (𝑁 / 2)) = (𝑁 / 2)) | |
| 25 | 23, 24 | syl 14 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑁 − (𝑁 / 2)) = (𝑁 / 2)) |
| 26 | 22, 25 | breqtrrd 4111 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘2) → 1 ≤ (𝑁 − (𝑁 / 2))) |
| 27 | 15, 7, 18, 26 | lesubd 8704 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑁 / 2) ≤ (𝑁 − 1)) |
| 28 | 2t2e4 9273 | . . . . . . . . 9 ⊢ (2 · 2) = 4 | |
| 29 | 28 | eqcomi 2233 | . . . . . . . 8 ⊢ 4 = (2 · 2) |
| 30 | 29 | a1i 9 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘2) → 4 = (2 · 2)) |
| 31 | 30 | oveq2d 6023 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑁 / 4) = (𝑁 / (2 · 2))) |
| 32 | 2cnd 9191 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘2) → 2 ∈ ℂ) | |
| 33 | 19 | a1i 9 | . . . . . . . 8 ⊢ (𝑁 ∈ (ℤ≥‘2) → 2 ∈ ℝ+) |
| 34 | 33 | rpap0d 9906 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘2) → 2 # 0) |
| 35 | 23, 32, 32, 34, 34 | divdivap1d 8977 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘2) → ((𝑁 / 2) / 2) = (𝑁 / (2 · 2))) |
| 36 | 31, 35 | eqtr4d 2265 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑁 / 4) = ((𝑁 / 2) / 2)) |
| 37 | 36 | breq1d 4093 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘2) → ((𝑁 / 4) ≤ ((𝑁 − 1) / 2) ↔ ((𝑁 / 2) / 2) ≤ ((𝑁 − 1) / 2))) |
| 38 | 18, 11, 33 | lediv1d 9947 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘2) → ((𝑁 / 2) ≤ (𝑁 − 1) ↔ ((𝑁 / 2) / 2) ≤ ((𝑁 − 1) / 2))) |
| 39 | 37, 38 | bitr4d 191 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘2) → ((𝑁 / 4) ≤ ((𝑁 − 1) / 2) ↔ (𝑁 / 2) ≤ (𝑁 − 1))) |
| 40 | 27, 39 | mpbird 167 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑁 / 4) ≤ ((𝑁 − 1) / 2)) |
| 41 | 6, 9, 12, 14, 40 | letrd 8278 | 1 ⊢ (𝑁 ∈ (ℤ≥‘2) → (⌊‘(𝑁 / 4)) ≤ ((𝑁 − 1) / 2)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 class class class wbr 4083 ‘cfv 5318 (class class class)co 6007 ℂcc 8005 ℝcr 8006 1c1 8008 · cmul 8012 ≤ cle 8190 − cmin 8325 / cdiv 8827 ℕcn 9118 2c2 9169 4c4 9171 ℤcz 9454 ℤ≥cuz 9730 ℚcq 9822 ℝ+crp 9857 ⌊cfl 10496 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-mulrcl 8106 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-1rid 8114 ax-0id 8115 ax-rnegex 8116 ax-precex 8117 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-apti 8122 ax-pre-ltadd 8123 ax-pre-mulgt0 8124 ax-pre-mulext 8125 ax-arch 8126 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-po 4387 df-iso 4388 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-reap 8730 df-ap 8737 df-div 8828 df-inn 9119 df-2 9177 df-3 9178 df-4 9179 df-n0 9378 df-z 9455 df-uz 9731 df-q 9823 df-rp 9858 df-fl 10498 |
| This theorem is referenced by: fldiv4lem1div2 10535 gausslemma2dlem4 15751 |
| Copyright terms: Public domain | W3C validator |