ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fldiv4lem1div2uz2 GIF version

Theorem fldiv4lem1div2uz2 10398
Description: The floor of an integer greater than 1, divided by 4 is less than or equal to the half of the integer minus 1. (Contributed by AV, 5-Jul-2021.) (Proof shortened by AV, 9-Jul-2022.)
Assertion
Ref Expression
fldiv4lem1div2uz2 (𝑁 ∈ (ℤ‘2) → (⌊‘(𝑁 / 4)) ≤ ((𝑁 − 1) / 2))

Proof of Theorem fldiv4lem1div2uz2
StepHypRef Expression
1 eluzelz 9612 . . . . 5 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℤ)
2 4nn 9156 . . . . 5 4 ∈ ℕ
3 znq 9700 . . . . 5 ((𝑁 ∈ ℤ ∧ 4 ∈ ℕ) → (𝑁 / 4) ∈ ℚ)
41, 2, 3sylancl 413 . . . 4 (𝑁 ∈ (ℤ‘2) → (𝑁 / 4) ∈ ℚ)
54flqcld 10369 . . 3 (𝑁 ∈ (ℤ‘2) → (⌊‘(𝑁 / 4)) ∈ ℤ)
65zred 9450 . 2 (𝑁 ∈ (ℤ‘2) → (⌊‘(𝑁 / 4)) ∈ ℝ)
7 eluzelre 9613 . . 3 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℝ)
82a1i 9 . . 3 (𝑁 ∈ (ℤ‘2) → 4 ∈ ℕ)
97, 8nndivred 9042 . 2 (𝑁 ∈ (ℤ‘2) → (𝑁 / 4) ∈ ℝ)
10 peano2rem 8295 . . . 4 (𝑁 ∈ ℝ → (𝑁 − 1) ∈ ℝ)
117, 10syl 14 . . 3 (𝑁 ∈ (ℤ‘2) → (𝑁 − 1) ∈ ℝ)
1211rehalfcld 9240 . 2 (𝑁 ∈ (ℤ‘2) → ((𝑁 − 1) / 2) ∈ ℝ)
13 flqle 10370 . . 3 ((𝑁 / 4) ∈ ℚ → (⌊‘(𝑁 / 4)) ≤ (𝑁 / 4))
144, 13syl 14 . 2 (𝑁 ∈ (ℤ‘2) → (⌊‘(𝑁 / 4)) ≤ (𝑁 / 4))
15 1red 8043 . . . 4 (𝑁 ∈ (ℤ‘2) → 1 ∈ ℝ)
16 zre 9332 . . . . 5 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
17 rehalfcl 9220 . . . . 5 (𝑁 ∈ ℝ → (𝑁 / 2) ∈ ℝ)
181, 16, 173syl 17 . . . 4 (𝑁 ∈ (ℤ‘2) → (𝑁 / 2) ∈ ℝ)
19 2rp 9735 . . . . . 6 2 ∈ ℝ+
20 eluzle 9615 . . . . . 6 (𝑁 ∈ (ℤ‘2) → 2 ≤ 𝑁)
21 divge1 9800 . . . . . 6 ((2 ∈ ℝ+𝑁 ∈ ℝ ∧ 2 ≤ 𝑁) → 1 ≤ (𝑁 / 2))
2219, 7, 20, 21mp3an2i 1353 . . . . 5 (𝑁 ∈ (ℤ‘2) → 1 ≤ (𝑁 / 2))
23 eluzelcn 9614 . . . . . 6 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℂ)
24 subhalfhalf 9228 . . . . . 6 (𝑁 ∈ ℂ → (𝑁 − (𝑁 / 2)) = (𝑁 / 2))
2523, 24syl 14 . . . . 5 (𝑁 ∈ (ℤ‘2) → (𝑁 − (𝑁 / 2)) = (𝑁 / 2))
2622, 25breqtrrd 4062 . . . 4 (𝑁 ∈ (ℤ‘2) → 1 ≤ (𝑁 − (𝑁 / 2)))
2715, 7, 18, 26lesubd 8578 . . 3 (𝑁 ∈ (ℤ‘2) → (𝑁 / 2) ≤ (𝑁 − 1))
28 2t2e4 9147 . . . . . . . . 9 (2 · 2) = 4
2928eqcomi 2200 . . . . . . . 8 4 = (2 · 2)
3029a1i 9 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → 4 = (2 · 2))
3130oveq2d 5939 . . . . . 6 (𝑁 ∈ (ℤ‘2) → (𝑁 / 4) = (𝑁 / (2 · 2)))
32 2cnd 9065 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → 2 ∈ ℂ)
3319a1i 9 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → 2 ∈ ℝ+)
3433rpap0d 9779 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → 2 # 0)
3523, 32, 32, 34, 34divdivap1d 8851 . . . . . 6 (𝑁 ∈ (ℤ‘2) → ((𝑁 / 2) / 2) = (𝑁 / (2 · 2)))
3631, 35eqtr4d 2232 . . . . 5 (𝑁 ∈ (ℤ‘2) → (𝑁 / 4) = ((𝑁 / 2) / 2))
3736breq1d 4044 . . . 4 (𝑁 ∈ (ℤ‘2) → ((𝑁 / 4) ≤ ((𝑁 − 1) / 2) ↔ ((𝑁 / 2) / 2) ≤ ((𝑁 − 1) / 2)))
3818, 11, 33lediv1d 9820 . . . 4 (𝑁 ∈ (ℤ‘2) → ((𝑁 / 2) ≤ (𝑁 − 1) ↔ ((𝑁 / 2) / 2) ≤ ((𝑁 − 1) / 2)))
3937, 38bitr4d 191 . . 3 (𝑁 ∈ (ℤ‘2) → ((𝑁 / 4) ≤ ((𝑁 − 1) / 2) ↔ (𝑁 / 2) ≤ (𝑁 − 1)))
4027, 39mpbird 167 . 2 (𝑁 ∈ (ℤ‘2) → (𝑁 / 4) ≤ ((𝑁 − 1) / 2))
416, 9, 12, 14, 40letrd 8152 1 (𝑁 ∈ (ℤ‘2) → (⌊‘(𝑁 / 4)) ≤ ((𝑁 − 1) / 2))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2167   class class class wbr 4034  cfv 5259  (class class class)co 5923  cc 7879  cr 7880  1c1 7882   · cmul 7886  cle 8064  cmin 8199   / cdiv 8701  cn 8992  2c2 9043  4c4 9045  cz 9328  cuz 9603  cq 9695  +crp 9730  cfl 10360
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7972  ax-resscn 7973  ax-1cn 7974  ax-1re 7975  ax-icn 7976  ax-addcl 7977  ax-addrcl 7978  ax-mulcl 7979  ax-mulrcl 7980  ax-addcom 7981  ax-mulcom 7982  ax-addass 7983  ax-mulass 7984  ax-distr 7985  ax-i2m1 7986  ax-0lt1 7987  ax-1rid 7988  ax-0id 7989  ax-rnegex 7990  ax-precex 7991  ax-cnre 7992  ax-pre-ltirr 7993  ax-pre-ltwlin 7994  ax-pre-lttrn 7995  ax-pre-apti 7996  ax-pre-ltadd 7997  ax-pre-mulgt0 7998  ax-pre-mulext 7999  ax-arch 8000
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-po 4332  df-iso 4333  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-riota 5878  df-ov 5926  df-oprab 5927  df-mpo 5928  df-1st 6199  df-2nd 6200  df-pnf 8065  df-mnf 8066  df-xr 8067  df-ltxr 8068  df-le 8069  df-sub 8201  df-neg 8202  df-reap 8604  df-ap 8611  df-div 8702  df-inn 8993  df-2 9051  df-3 9052  df-4 9053  df-n0 9252  df-z 9329  df-uz 9604  df-q 9696  df-rp 9731  df-fl 10362
This theorem is referenced by:  fldiv4lem1div2  10399  gausslemma2dlem4  15315
  Copyright terms: Public domain W3C validator