| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fldiv4lem1div2uz2 | GIF version | ||
| Description: The floor of an integer greater than 1, divided by 4 is less than or equal to the half of the integer minus 1. (Contributed by AV, 5-Jul-2021.) (Proof shortened by AV, 9-Jul-2022.) |
| Ref | Expression |
|---|---|
| fldiv4lem1div2uz2 | ⊢ (𝑁 ∈ (ℤ≥‘2) → (⌊‘(𝑁 / 4)) ≤ ((𝑁 − 1) / 2)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzelz 9612 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑁 ∈ ℤ) | |
| 2 | 4nn 9156 | . . . . 5 ⊢ 4 ∈ ℕ | |
| 3 | znq 9700 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 4 ∈ ℕ) → (𝑁 / 4) ∈ ℚ) | |
| 4 | 1, 2, 3 | sylancl 413 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑁 / 4) ∈ ℚ) |
| 5 | 4 | flqcld 10369 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘2) → (⌊‘(𝑁 / 4)) ∈ ℤ) |
| 6 | 5 | zred 9450 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘2) → (⌊‘(𝑁 / 4)) ∈ ℝ) |
| 7 | eluzelre 9613 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑁 ∈ ℝ) | |
| 8 | 2 | a1i 9 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘2) → 4 ∈ ℕ) |
| 9 | 7, 8 | nndivred 9042 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑁 / 4) ∈ ℝ) |
| 10 | peano2rem 8295 | . . . 4 ⊢ (𝑁 ∈ ℝ → (𝑁 − 1) ∈ ℝ) | |
| 11 | 7, 10 | syl 14 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑁 − 1) ∈ ℝ) |
| 12 | 11 | rehalfcld 9240 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘2) → ((𝑁 − 1) / 2) ∈ ℝ) |
| 13 | flqle 10370 | . . 3 ⊢ ((𝑁 / 4) ∈ ℚ → (⌊‘(𝑁 / 4)) ≤ (𝑁 / 4)) | |
| 14 | 4, 13 | syl 14 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘2) → (⌊‘(𝑁 / 4)) ≤ (𝑁 / 4)) |
| 15 | 1red 8043 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘2) → 1 ∈ ℝ) | |
| 16 | zre 9332 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
| 17 | rehalfcl 9220 | . . . . 5 ⊢ (𝑁 ∈ ℝ → (𝑁 / 2) ∈ ℝ) | |
| 18 | 1, 16, 17 | 3syl 17 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑁 / 2) ∈ ℝ) |
| 19 | 2rp 9735 | . . . . . 6 ⊢ 2 ∈ ℝ+ | |
| 20 | eluzle 9615 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘2) → 2 ≤ 𝑁) | |
| 21 | divge1 9800 | . . . . . 6 ⊢ ((2 ∈ ℝ+ ∧ 𝑁 ∈ ℝ ∧ 2 ≤ 𝑁) → 1 ≤ (𝑁 / 2)) | |
| 22 | 19, 7, 20, 21 | mp3an2i 1353 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘2) → 1 ≤ (𝑁 / 2)) |
| 23 | eluzelcn 9614 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑁 ∈ ℂ) | |
| 24 | subhalfhalf 9228 | . . . . . 6 ⊢ (𝑁 ∈ ℂ → (𝑁 − (𝑁 / 2)) = (𝑁 / 2)) | |
| 25 | 23, 24 | syl 14 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑁 − (𝑁 / 2)) = (𝑁 / 2)) |
| 26 | 22, 25 | breqtrrd 4062 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘2) → 1 ≤ (𝑁 − (𝑁 / 2))) |
| 27 | 15, 7, 18, 26 | lesubd 8578 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑁 / 2) ≤ (𝑁 − 1)) |
| 28 | 2t2e4 9147 | . . . . . . . . 9 ⊢ (2 · 2) = 4 | |
| 29 | 28 | eqcomi 2200 | . . . . . . . 8 ⊢ 4 = (2 · 2) |
| 30 | 29 | a1i 9 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘2) → 4 = (2 · 2)) |
| 31 | 30 | oveq2d 5939 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑁 / 4) = (𝑁 / (2 · 2))) |
| 32 | 2cnd 9065 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘2) → 2 ∈ ℂ) | |
| 33 | 19 | a1i 9 | . . . . . . . 8 ⊢ (𝑁 ∈ (ℤ≥‘2) → 2 ∈ ℝ+) |
| 34 | 33 | rpap0d 9779 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘2) → 2 # 0) |
| 35 | 23, 32, 32, 34, 34 | divdivap1d 8851 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘2) → ((𝑁 / 2) / 2) = (𝑁 / (2 · 2))) |
| 36 | 31, 35 | eqtr4d 2232 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑁 / 4) = ((𝑁 / 2) / 2)) |
| 37 | 36 | breq1d 4044 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘2) → ((𝑁 / 4) ≤ ((𝑁 − 1) / 2) ↔ ((𝑁 / 2) / 2) ≤ ((𝑁 − 1) / 2))) |
| 38 | 18, 11, 33 | lediv1d 9820 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘2) → ((𝑁 / 2) ≤ (𝑁 − 1) ↔ ((𝑁 / 2) / 2) ≤ ((𝑁 − 1) / 2))) |
| 39 | 37, 38 | bitr4d 191 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘2) → ((𝑁 / 4) ≤ ((𝑁 − 1) / 2) ↔ (𝑁 / 2) ≤ (𝑁 − 1))) |
| 40 | 27, 39 | mpbird 167 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑁 / 4) ≤ ((𝑁 − 1) / 2)) |
| 41 | 6, 9, 12, 14, 40 | letrd 8152 | 1 ⊢ (𝑁 ∈ (ℤ≥‘2) → (⌊‘(𝑁 / 4)) ≤ ((𝑁 − 1) / 2)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 class class class wbr 4034 ‘cfv 5259 (class class class)co 5923 ℂcc 7879 ℝcr 7880 1c1 7882 · cmul 7886 ≤ cle 8064 − cmin 8199 / cdiv 8701 ℕcn 8992 2c2 9043 4c4 9045 ℤcz 9328 ℤ≥cuz 9603 ℚcq 9695 ℝ+crp 9730 ⌊cfl 10360 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7972 ax-resscn 7973 ax-1cn 7974 ax-1re 7975 ax-icn 7976 ax-addcl 7977 ax-addrcl 7978 ax-mulcl 7979 ax-mulrcl 7980 ax-addcom 7981 ax-mulcom 7982 ax-addass 7983 ax-mulass 7984 ax-distr 7985 ax-i2m1 7986 ax-0lt1 7987 ax-1rid 7988 ax-0id 7989 ax-rnegex 7990 ax-precex 7991 ax-cnre 7992 ax-pre-ltirr 7993 ax-pre-ltwlin 7994 ax-pre-lttrn 7995 ax-pre-apti 7996 ax-pre-ltadd 7997 ax-pre-mulgt0 7998 ax-pre-mulext 7999 ax-arch 8000 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-po 4332 df-iso 4333 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fv 5267 df-riota 5878 df-ov 5926 df-oprab 5927 df-mpo 5928 df-1st 6199 df-2nd 6200 df-pnf 8065 df-mnf 8066 df-xr 8067 df-ltxr 8068 df-le 8069 df-sub 8201 df-neg 8202 df-reap 8604 df-ap 8611 df-div 8702 df-inn 8993 df-2 9051 df-3 9052 df-4 9053 df-n0 9252 df-z 9329 df-uz 9604 df-q 9696 df-rp 9731 df-fl 10362 |
| This theorem is referenced by: fldiv4lem1div2 10399 gausslemma2dlem4 15315 |
| Copyright terms: Public domain | W3C validator |