| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fldiv4lem1div2uz2 | GIF version | ||
| Description: The floor of an integer greater than 1, divided by 4 is less than or equal to the half of the integer minus 1. (Contributed by AV, 5-Jul-2021.) (Proof shortened by AV, 9-Jul-2022.) |
| Ref | Expression |
|---|---|
| fldiv4lem1div2uz2 | ⊢ (𝑁 ∈ (ℤ≥‘2) → (⌊‘(𝑁 / 4)) ≤ ((𝑁 − 1) / 2)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzelz 9672 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑁 ∈ ℤ) | |
| 2 | 4nn 9215 | . . . . 5 ⊢ 4 ∈ ℕ | |
| 3 | znq 9760 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 4 ∈ ℕ) → (𝑁 / 4) ∈ ℚ) | |
| 4 | 1, 2, 3 | sylancl 413 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑁 / 4) ∈ ℚ) |
| 5 | 4 | flqcld 10437 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘2) → (⌊‘(𝑁 / 4)) ∈ ℤ) |
| 6 | 5 | zred 9510 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘2) → (⌊‘(𝑁 / 4)) ∈ ℝ) |
| 7 | eluzelre 9673 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑁 ∈ ℝ) | |
| 8 | 2 | a1i 9 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘2) → 4 ∈ ℕ) |
| 9 | 7, 8 | nndivred 9101 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑁 / 4) ∈ ℝ) |
| 10 | peano2rem 8354 | . . . 4 ⊢ (𝑁 ∈ ℝ → (𝑁 − 1) ∈ ℝ) | |
| 11 | 7, 10 | syl 14 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑁 − 1) ∈ ℝ) |
| 12 | 11 | rehalfcld 9299 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘2) → ((𝑁 − 1) / 2) ∈ ℝ) |
| 13 | flqle 10438 | . . 3 ⊢ ((𝑁 / 4) ∈ ℚ → (⌊‘(𝑁 / 4)) ≤ (𝑁 / 4)) | |
| 14 | 4, 13 | syl 14 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘2) → (⌊‘(𝑁 / 4)) ≤ (𝑁 / 4)) |
| 15 | 1red 8102 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘2) → 1 ∈ ℝ) | |
| 16 | zre 9391 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
| 17 | rehalfcl 9279 | . . . . 5 ⊢ (𝑁 ∈ ℝ → (𝑁 / 2) ∈ ℝ) | |
| 18 | 1, 16, 17 | 3syl 17 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑁 / 2) ∈ ℝ) |
| 19 | 2rp 9795 | . . . . . 6 ⊢ 2 ∈ ℝ+ | |
| 20 | eluzle 9675 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘2) → 2 ≤ 𝑁) | |
| 21 | divge1 9860 | . . . . . 6 ⊢ ((2 ∈ ℝ+ ∧ 𝑁 ∈ ℝ ∧ 2 ≤ 𝑁) → 1 ≤ (𝑁 / 2)) | |
| 22 | 19, 7, 20, 21 | mp3an2i 1355 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘2) → 1 ≤ (𝑁 / 2)) |
| 23 | eluzelcn 9674 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑁 ∈ ℂ) | |
| 24 | subhalfhalf 9287 | . . . . . 6 ⊢ (𝑁 ∈ ℂ → (𝑁 − (𝑁 / 2)) = (𝑁 / 2)) | |
| 25 | 23, 24 | syl 14 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑁 − (𝑁 / 2)) = (𝑁 / 2)) |
| 26 | 22, 25 | breqtrrd 4078 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘2) → 1 ≤ (𝑁 − (𝑁 / 2))) |
| 27 | 15, 7, 18, 26 | lesubd 8637 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑁 / 2) ≤ (𝑁 − 1)) |
| 28 | 2t2e4 9206 | . . . . . . . . 9 ⊢ (2 · 2) = 4 | |
| 29 | 28 | eqcomi 2210 | . . . . . . . 8 ⊢ 4 = (2 · 2) |
| 30 | 29 | a1i 9 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘2) → 4 = (2 · 2)) |
| 31 | 30 | oveq2d 5972 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑁 / 4) = (𝑁 / (2 · 2))) |
| 32 | 2cnd 9124 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘2) → 2 ∈ ℂ) | |
| 33 | 19 | a1i 9 | . . . . . . . 8 ⊢ (𝑁 ∈ (ℤ≥‘2) → 2 ∈ ℝ+) |
| 34 | 33 | rpap0d 9839 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘2) → 2 # 0) |
| 35 | 23, 32, 32, 34, 34 | divdivap1d 8910 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘2) → ((𝑁 / 2) / 2) = (𝑁 / (2 · 2))) |
| 36 | 31, 35 | eqtr4d 2242 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑁 / 4) = ((𝑁 / 2) / 2)) |
| 37 | 36 | breq1d 4060 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘2) → ((𝑁 / 4) ≤ ((𝑁 − 1) / 2) ↔ ((𝑁 / 2) / 2) ≤ ((𝑁 − 1) / 2))) |
| 38 | 18, 11, 33 | lediv1d 9880 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘2) → ((𝑁 / 2) ≤ (𝑁 − 1) ↔ ((𝑁 / 2) / 2) ≤ ((𝑁 − 1) / 2))) |
| 39 | 37, 38 | bitr4d 191 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘2) → ((𝑁 / 4) ≤ ((𝑁 − 1) / 2) ↔ (𝑁 / 2) ≤ (𝑁 − 1))) |
| 40 | 27, 39 | mpbird 167 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑁 / 4) ≤ ((𝑁 − 1) / 2)) |
| 41 | 6, 9, 12, 14, 40 | letrd 8211 | 1 ⊢ (𝑁 ∈ (ℤ≥‘2) → (⌊‘(𝑁 / 4)) ≤ ((𝑁 − 1) / 2)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 class class class wbr 4050 ‘cfv 5279 (class class class)co 5956 ℂcc 7938 ℝcr 7939 1c1 7941 · cmul 7945 ≤ cle 8123 − cmin 8258 / cdiv 8760 ℕcn 9051 2c2 9102 4c4 9104 ℤcz 9387 ℤ≥cuz 9663 ℚcq 9755 ℝ+crp 9790 ⌊cfl 10428 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4169 ax-pow 4225 ax-pr 4260 ax-un 4487 ax-setind 4592 ax-cnex 8031 ax-resscn 8032 ax-1cn 8033 ax-1re 8034 ax-icn 8035 ax-addcl 8036 ax-addrcl 8037 ax-mulcl 8038 ax-mulrcl 8039 ax-addcom 8040 ax-mulcom 8041 ax-addass 8042 ax-mulass 8043 ax-distr 8044 ax-i2m1 8045 ax-0lt1 8046 ax-1rid 8047 ax-0id 8048 ax-rnegex 8049 ax-precex 8050 ax-cnre 8051 ax-pre-ltirr 8052 ax-pre-ltwlin 8053 ax-pre-lttrn 8054 ax-pre-apti 8055 ax-pre-ltadd 8056 ax-pre-mulgt0 8057 ax-pre-mulext 8058 ax-arch 8059 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-int 3891 df-iun 3934 df-br 4051 df-opab 4113 df-mpt 4114 df-id 4347 df-po 4350 df-iso 4351 df-xp 4688 df-rel 4689 df-cnv 4690 df-co 4691 df-dm 4692 df-rn 4693 df-res 4694 df-ima 4695 df-iota 5240 df-fun 5281 df-fn 5282 df-f 5283 df-fv 5287 df-riota 5911 df-ov 5959 df-oprab 5960 df-mpo 5961 df-1st 6238 df-2nd 6239 df-pnf 8124 df-mnf 8125 df-xr 8126 df-ltxr 8127 df-le 8128 df-sub 8260 df-neg 8261 df-reap 8663 df-ap 8670 df-div 8761 df-inn 9052 df-2 9110 df-3 9111 df-4 9112 df-n0 9311 df-z 9388 df-uz 9664 df-q 9756 df-rp 9791 df-fl 10430 |
| This theorem is referenced by: fldiv4lem1div2 10467 gausslemma2dlem4 15611 |
| Copyright terms: Public domain | W3C validator |