![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > frechashgf1o | GIF version |
Description: 𝐺 maps ω one-to-one onto ℕ0. (Contributed by Jim Kingdon, 19-May-2020.) |
Ref | Expression |
---|---|
frecfzennn.1 | ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) |
Ref | Expression |
---|---|
frechashgf1o | ⊢ 𝐺:ω–1-1-onto→ℕ0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0zd 9332 | . . . 4 ⊢ (⊤ → 0 ∈ ℤ) | |
2 | frecfzennn.1 | . . . 4 ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) | |
3 | 1, 2 | frec2uzf1od 10480 | . . 3 ⊢ (⊤ → 𝐺:ω–1-1-onto→(ℤ≥‘0)) |
4 | 3 | mptru 1373 | . 2 ⊢ 𝐺:ω–1-1-onto→(ℤ≥‘0) |
5 | nn0uz 9630 | . . 3 ⊢ ℕ0 = (ℤ≥‘0) | |
6 | f1oeq3 5491 | . . 3 ⊢ (ℕ0 = (ℤ≥‘0) → (𝐺:ω–1-1-onto→ℕ0 ↔ 𝐺:ω–1-1-onto→(ℤ≥‘0))) | |
7 | 5, 6 | ax-mp 5 | . 2 ⊢ (𝐺:ω–1-1-onto→ℕ0 ↔ 𝐺:ω–1-1-onto→(ℤ≥‘0)) |
8 | 4, 7 | mpbir 146 | 1 ⊢ 𝐺:ω–1-1-onto→ℕ0 |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 = wceq 1364 ⊤wtru 1365 ↦ cmpt 4091 ωcom 4623 –1-1-onto→wf1o 5254 ‘cfv 5255 (class class class)co 5919 freccfrec 6445 0cc0 7874 1c1 7875 + caddc 7877 ℕ0cn0 9243 ℤcz 9320 ℤ≥cuz 9595 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-iinf 4621 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-addcom 7974 ax-addass 7976 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-0id 7982 ax-rnegex 7983 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-ltadd 7990 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-tr 4129 df-id 4325 df-iord 4398 df-on 4400 df-ilim 4401 df-suc 4403 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-recs 6360 df-frec 6446 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-inn 8985 df-n0 9244 df-z 9321 df-uz 9596 |
This theorem is referenced by: fzfig 10504 nnenom 10508 fnn0nninf 10512 0tonninf 10514 1tonninf 10515 omgadd 10876 ennnfonelemp1 12566 ennnfonelemhdmp1 12569 ennnfonelemss 12570 ennnfonelemkh 12572 ennnfonelemhf1o 12573 ennnfonelemex 12574 ennnfonelemnn0 12582 ctinfomlemom 12587 012of 15556 2o01f 15557 isomninnlem 15590 iswomninnlem 15609 ismkvnnlem 15612 |
Copyright terms: Public domain | W3C validator |