| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > frechashgf1o | GIF version | ||
| Description: 𝐺 maps ω one-to-one onto ℕ0. (Contributed by Jim Kingdon, 19-May-2020.) | 
| Ref | Expression | 
|---|---|
| frecfzennn.1 | ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) | 
| Ref | Expression | 
|---|---|
| frechashgf1o | ⊢ 𝐺:ω–1-1-onto→ℕ0 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 0zd 9338 | . . . 4 ⊢ (⊤ → 0 ∈ ℤ) | |
| 2 | frecfzennn.1 | . . . 4 ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) | |
| 3 | 1, 2 | frec2uzf1od 10498 | . . 3 ⊢ (⊤ → 𝐺:ω–1-1-onto→(ℤ≥‘0)) | 
| 4 | 3 | mptru 1373 | . 2 ⊢ 𝐺:ω–1-1-onto→(ℤ≥‘0) | 
| 5 | nn0uz 9636 | . . 3 ⊢ ℕ0 = (ℤ≥‘0) | |
| 6 | f1oeq3 5494 | . . 3 ⊢ (ℕ0 = (ℤ≥‘0) → (𝐺:ω–1-1-onto→ℕ0 ↔ 𝐺:ω–1-1-onto→(ℤ≥‘0))) | |
| 7 | 5, 6 | ax-mp 5 | . 2 ⊢ (𝐺:ω–1-1-onto→ℕ0 ↔ 𝐺:ω–1-1-onto→(ℤ≥‘0)) | 
| 8 | 4, 7 | mpbir 146 | 1 ⊢ 𝐺:ω–1-1-onto→ℕ0 | 
| Colors of variables: wff set class | 
| Syntax hints: ↔ wb 105 = wceq 1364 ⊤wtru 1365 ↦ cmpt 4094 ωcom 4626 –1-1-onto→wf1o 5257 ‘cfv 5258 (class class class)co 5922 freccfrec 6448 0cc0 7879 1c1 7880 + caddc 7882 ℕ0cn0 9249 ℤcz 9326 ℤ≥cuz 9601 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-ltadd 7995 | 
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-recs 6363 df-frec 6449 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-inn 8991 df-n0 9250 df-z 9327 df-uz 9602 | 
| This theorem is referenced by: fzfig 10522 nnenom 10526 fnn0nninf 10530 0tonninf 10532 1tonninf 10533 omgadd 10894 ennnfonelemp1 12623 ennnfonelemhdmp1 12626 ennnfonelemss 12627 ennnfonelemkh 12629 ennnfonelemhf1o 12630 ennnfonelemex 12631 ennnfonelemnn0 12639 ctinfomlemom 12644 012of 15640 2o01f 15641 isomninnlem 15674 iswomninnlem 15693 ismkvnnlem 15696 | 
| Copyright terms: Public domain | W3C validator |