| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > frechashgf1o | GIF version | ||
| Description: 𝐺 maps ω one-to-one onto ℕ0. (Contributed by Jim Kingdon, 19-May-2020.) |
| Ref | Expression |
|---|---|
| frecfzennn.1 | ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) |
| Ref | Expression |
|---|---|
| frechashgf1o | ⊢ 𝐺:ω–1-1-onto→ℕ0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0zd 9384 | . . . 4 ⊢ (⊤ → 0 ∈ ℤ) | |
| 2 | frecfzennn.1 | . . . 4 ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) | |
| 3 | 1, 2 | frec2uzf1od 10551 | . . 3 ⊢ (⊤ → 𝐺:ω–1-1-onto→(ℤ≥‘0)) |
| 4 | 3 | mptru 1382 | . 2 ⊢ 𝐺:ω–1-1-onto→(ℤ≥‘0) |
| 5 | nn0uz 9683 | . . 3 ⊢ ℕ0 = (ℤ≥‘0) | |
| 6 | f1oeq3 5512 | . . 3 ⊢ (ℕ0 = (ℤ≥‘0) → (𝐺:ω–1-1-onto→ℕ0 ↔ 𝐺:ω–1-1-onto→(ℤ≥‘0))) | |
| 7 | 5, 6 | ax-mp 5 | . 2 ⊢ (𝐺:ω–1-1-onto→ℕ0 ↔ 𝐺:ω–1-1-onto→(ℤ≥‘0)) |
| 8 | 4, 7 | mpbir 146 | 1 ⊢ 𝐺:ω–1-1-onto→ℕ0 |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1373 ⊤wtru 1374 ↦ cmpt 4105 ωcom 4638 –1-1-onto→wf1o 5270 ‘cfv 5271 (class class class)co 5944 freccfrec 6476 0cc0 7925 1c1 7926 + caddc 7928 ℕ0cn0 9295 ℤcz 9372 ℤ≥cuz 9648 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-iinf 4636 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-addcom 8025 ax-addass 8027 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-0id 8033 ax-rnegex 8034 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-ltadd 8041 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-tr 4143 df-id 4340 df-iord 4413 df-on 4415 df-ilim 4416 df-suc 4418 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-recs 6391 df-frec 6477 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-inn 9037 df-n0 9296 df-z 9373 df-uz 9649 |
| This theorem is referenced by: fzfig 10575 nnenom 10579 fnn0nninf 10583 0tonninf 10585 1tonninf 10586 omgadd 10947 ennnfonelemp1 12777 ennnfonelemhdmp1 12780 ennnfonelemss 12781 ennnfonelemkh 12783 ennnfonelemhf1o 12784 ennnfonelemex 12785 ennnfonelemnn0 12793 ctinfomlemom 12798 012of 15930 2o01f 15931 isomninnlem 15969 iswomninnlem 15988 ismkvnnlem 15991 |
| Copyright terms: Public domain | W3C validator |