ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frechashgf1o GIF version

Theorem frechashgf1o 10384
Description: 𝐺 maps ω one-to-one onto 0. (Contributed by Jim Kingdon, 19-May-2020.)
Hypothesis
Ref Expression
frecfzennn.1 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
Assertion
Ref Expression
frechashgf1o 𝐺:ω–1-1-onto→ℕ0

Proof of Theorem frechashgf1o
StepHypRef Expression
1 0zd 9224 . . . 4 (⊤ → 0 ∈ ℤ)
2 frecfzennn.1 . . . 4 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
31, 2frec2uzf1od 10362 . . 3 (⊤ → 𝐺:ω–1-1-onto→(ℤ‘0))
43mptru 1357 . 2 𝐺:ω–1-1-onto→(ℤ‘0)
5 nn0uz 9521 . . 3 0 = (ℤ‘0)
6 f1oeq3 5433 . . 3 (ℕ0 = (ℤ‘0) → (𝐺:ω–1-1-onto→ℕ0𝐺:ω–1-1-onto→(ℤ‘0)))
75, 6ax-mp 5 . 2 (𝐺:ω–1-1-onto→ℕ0𝐺:ω–1-1-onto→(ℤ‘0))
84, 7mpbir 145 1 𝐺:ω–1-1-onto→ℕ0
Colors of variables: wff set class
Syntax hints:  wb 104   = wceq 1348  wtru 1349  cmpt 4050  ωcom 4574  1-1-ontowf1o 5197  cfv 5198  (class class class)co 5853  freccfrec 6369  0cc0 7774  1c1 7775   + caddc 7777  0cn0 9135  cz 9212  cuz 9487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-ltadd 7890
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-recs 6284  df-frec 6370  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-inn 8879  df-n0 9136  df-z 9213  df-uz 9488
This theorem is referenced by:  fzfig  10386  nnenom  10390  fnn0nninf  10393  0tonninf  10395  1tonninf  10396  omgadd  10737  ennnfonelemp1  12361  ennnfonelemhdmp1  12364  ennnfonelemss  12365  ennnfonelemkh  12367  ennnfonelemhf1o  12368  ennnfonelemex  12369  ennnfonelemnn0  12377  ctinfomlemom  12382  012of  14028  2o01f  14029  isomninnlem  14062  iswomninnlem  14081  ismkvnnlem  14084
  Copyright terms: Public domain W3C validator