![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > frechashgf1o | GIF version |
Description: 𝐺 maps ω one-to-one onto ℕ0. (Contributed by Jim Kingdon, 19-May-2020.) |
Ref | Expression |
---|---|
frecfzennn.1 | ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) |
Ref | Expression |
---|---|
frechashgf1o | ⊢ 𝐺:ω–1-1-onto→ℕ0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0zd 8918 | . . . 4 ⊢ (⊤ → 0 ∈ ℤ) | |
2 | frecfzennn.1 | . . . 4 ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) | |
3 | 1, 2 | frec2uzf1od 10020 | . . 3 ⊢ (⊤ → 𝐺:ω–1-1-onto→(ℤ≥‘0)) |
4 | 3 | mptru 1308 | . 2 ⊢ 𝐺:ω–1-1-onto→(ℤ≥‘0) |
5 | nn0uz 9210 | . . 3 ⊢ ℕ0 = (ℤ≥‘0) | |
6 | f1oeq3 5294 | . . 3 ⊢ (ℕ0 = (ℤ≥‘0) → (𝐺:ω–1-1-onto→ℕ0 ↔ 𝐺:ω–1-1-onto→(ℤ≥‘0))) | |
7 | 5, 6 | ax-mp 7 | . 2 ⊢ (𝐺:ω–1-1-onto→ℕ0 ↔ 𝐺:ω–1-1-onto→(ℤ≥‘0)) |
8 | 4, 7 | mpbir 145 | 1 ⊢ 𝐺:ω–1-1-onto→ℕ0 |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 = wceq 1299 ⊤wtru 1300 ↦ cmpt 3929 ωcom 4442 –1-1-onto→wf1o 5058 ‘cfv 5059 (class class class)co 5706 freccfrec 6217 0cc0 7500 1c1 7501 + caddc 7503 ℕ0cn0 8829 ℤcz 8906 ℤ≥cuz 9176 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 584 ax-in2 585 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-13 1459 ax-14 1460 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 ax-coll 3983 ax-sep 3986 ax-nul 3994 ax-pow 4038 ax-pr 4069 ax-un 4293 ax-setind 4390 ax-iinf 4440 ax-cnex 7586 ax-resscn 7587 ax-1cn 7588 ax-1re 7589 ax-icn 7590 ax-addcl 7591 ax-addrcl 7592 ax-mulcl 7593 ax-addcom 7595 ax-addass 7597 ax-distr 7599 ax-i2m1 7600 ax-0lt1 7601 ax-0id 7603 ax-rnegex 7604 ax-cnre 7606 ax-pre-ltirr 7607 ax-pre-ltwlin 7608 ax-pre-lttrn 7609 ax-pre-ltadd 7611 |
This theorem depends on definitions: df-bi 116 df-3or 931 df-3an 932 df-tru 1302 df-fal 1305 df-nf 1405 df-sb 1704 df-eu 1963 df-mo 1964 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-ne 2268 df-nel 2363 df-ral 2380 df-rex 2381 df-reu 2382 df-rab 2384 df-v 2643 df-sbc 2863 df-csb 2956 df-dif 3023 df-un 3025 df-in 3027 df-ss 3034 df-nul 3311 df-pw 3459 df-sn 3480 df-pr 3481 df-op 3483 df-uni 3684 df-int 3719 df-iun 3762 df-br 3876 df-opab 3930 df-mpt 3931 df-tr 3967 df-id 4153 df-iord 4226 df-on 4228 df-ilim 4229 df-suc 4231 df-iom 4443 df-xp 4483 df-rel 4484 df-cnv 4485 df-co 4486 df-dm 4487 df-rn 4488 df-res 4489 df-ima 4490 df-iota 5024 df-fun 5061 df-fn 5062 df-f 5063 df-f1 5064 df-fo 5065 df-f1o 5066 df-fv 5067 df-riota 5662 df-ov 5709 df-oprab 5710 df-mpo 5711 df-recs 6132 df-frec 6218 df-pnf 7674 df-mnf 7675 df-xr 7676 df-ltxr 7677 df-le 7678 df-sub 7806 df-neg 7807 df-inn 8579 df-n0 8830 df-z 8907 df-uz 9177 |
This theorem is referenced by: fzfig 10044 nnenom 10048 fnn0nninf 10051 0tonninf 10053 1tonninf 10054 omgadd 10389 ennnfonelemp1 11711 ennnfonelemhdmp1 11714 ennnfonelemss 11715 ennnfonelemkh 11717 ennnfonelemhf1o 11718 ennnfonelemex 11719 ennnfonelemnn0 11727 ctinfomlemom 11732 isomninnlem 12809 |
Copyright terms: Public domain | W3C validator |