| Step | Hyp | Ref
| Expression |
| 1 | | mplsubg.s |
. . . 4
⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
| 2 | | mplsubg.i |
. . . 4
⊢ (𝜑 → 𝐼 ∈ Fin) |
| 3 | | mplsubg.r |
. . . 4
⊢ (𝜑 → 𝑅 ∈ Grp) |
| 4 | | eqid 2206 |
. . . 4
⊢ {𝑓 ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈
Fin} |
| 5 | | eqid 2206 |
. . . 4
⊢
(invg‘𝑅) = (invg‘𝑅) |
| 6 | | eqid 2206 |
. . . 4
⊢
(Base‘𝑆) =
(Base‘𝑆) |
| 7 | | mplsubgfileminv.inv |
. . . 4
⊢ 𝑁 = (invg‘𝑆) |
| 8 | | mplsubg.p |
. . . . . 6
⊢ 𝑃 = (𝐼 mPoly 𝑅) |
| 9 | | mplsubg.u |
. . . . . 6
⊢ 𝑈 = (Base‘𝑃) |
| 10 | 8, 1, 9, 6 | mplbasss 14502 |
. . . . 5
⊢ 𝑈 ⊆ (Base‘𝑆) |
| 11 | | mplsubgfileminv.x |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ 𝑈) |
| 12 | 10, 11 | sselid 3192 |
. . . 4
⊢ (𝜑 → 𝑋 ∈ (Base‘𝑆)) |
| 13 | 1, 2, 3, 4, 5, 6, 7, 12 | psrneg 14493 |
. . 3
⊢ (𝜑 → (𝑁‘𝑋) = ((invg‘𝑅) ∘ 𝑋)) |
| 14 | 1, 2, 3, 4, 5, 6, 12 | psrnegcl 14489 |
. . 3
⊢ (𝜑 →
((invg‘𝑅)
∘ 𝑋) ∈
(Base‘𝑆)) |
| 15 | 13, 14 | eqeltrd 2283 |
. 2
⊢ (𝜑 → (𝑁‘𝑋) ∈ (Base‘𝑆)) |
| 16 | | eqid 2206 |
. . . . . . 7
⊢
(0g‘𝑅) = (0g‘𝑅) |
| 17 | 8, 1, 6, 16, 9 | mplelbascoe 14498 |
. . . . . 6
⊢ ((𝐼 ∈ Fin ∧ 𝑅 ∈ Grp) → (𝑋 ∈ 𝑈 ↔ (𝑋 ∈ (Base‘𝑆) ∧ ∃𝑎 ∈ (ℕ0
↑𝑚 𝐼)∀𝑏 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑘 ∈ 𝐼 (𝑎‘𝑘) < (𝑏‘𝑘) → (𝑋‘𝑏) = (0g‘𝑅))))) |
| 18 | 2, 3, 17 | syl2anc 411 |
. . . . 5
⊢ (𝜑 → (𝑋 ∈ 𝑈 ↔ (𝑋 ∈ (Base‘𝑆) ∧ ∃𝑎 ∈ (ℕ0
↑𝑚 𝐼)∀𝑏 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑘 ∈ 𝐼 (𝑎‘𝑘) < (𝑏‘𝑘) → (𝑋‘𝑏) = (0g‘𝑅))))) |
| 19 | 11, 18 | mpbid 147 |
. . . 4
⊢ (𝜑 → (𝑋 ∈ (Base‘𝑆) ∧ ∃𝑎 ∈ (ℕ0
↑𝑚 𝐼)∀𝑏 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑘 ∈ 𝐼 (𝑎‘𝑘) < (𝑏‘𝑘) → (𝑋‘𝑏) = (0g‘𝑅)))) |
| 20 | 19 | simprd 114 |
. . 3
⊢ (𝜑 → ∃𝑎 ∈ (ℕ0
↑𝑚 𝐼)∀𝑏 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑘 ∈ 𝐼 (𝑎‘𝑘) < (𝑏‘𝑘) → (𝑋‘𝑏) = (0g‘𝑅))) |
| 21 | 13 | fveq1d 5585 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑁‘𝑋)‘𝑏) = (((invg‘𝑅) ∘ 𝑋)‘𝑏)) |
| 22 | 21 | ad2antrr 488 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑏 ∈ (ℕ0
↑𝑚 𝐼)) ∧ (𝑋‘𝑏) = (0g‘𝑅)) → ((𝑁‘𝑋)‘𝑏) = (((invg‘𝑅) ∘ 𝑋)‘𝑏)) |
| 23 | | eqid 2206 |
. . . . . . . . . . 11
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 24 | 1, 23, 2, 6, 12 | psrelbasfi 14482 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑋:(ℕ0
↑𝑚 𝐼)⟶(Base‘𝑅)) |
| 25 | 24 | ad2antrr 488 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑏 ∈ (ℕ0
↑𝑚 𝐼)) ∧ (𝑋‘𝑏) = (0g‘𝑅)) → 𝑋:(ℕ0
↑𝑚 𝐼)⟶(Base‘𝑅)) |
| 26 | | simplr 528 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑏 ∈ (ℕ0
↑𝑚 𝐼)) ∧ (𝑋‘𝑏) = (0g‘𝑅)) → 𝑏 ∈ (ℕ0
↑𝑚 𝐼)) |
| 27 | | fvco3 5657 |
. . . . . . . . 9
⊢ ((𝑋:(ℕ0
↑𝑚 𝐼)⟶(Base‘𝑅) ∧ 𝑏 ∈ (ℕ0
↑𝑚 𝐼)) → (((invg‘𝑅) ∘ 𝑋)‘𝑏) = ((invg‘𝑅)‘(𝑋‘𝑏))) |
| 28 | 25, 26, 27 | syl2anc 411 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑏 ∈ (ℕ0
↑𝑚 𝐼)) ∧ (𝑋‘𝑏) = (0g‘𝑅)) → (((invg‘𝑅) ∘ 𝑋)‘𝑏) = ((invg‘𝑅)‘(𝑋‘𝑏))) |
| 29 | | simpr 110 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑏 ∈ (ℕ0
↑𝑚 𝐼)) ∧ (𝑋‘𝑏) = (0g‘𝑅)) → (𝑋‘𝑏) = (0g‘𝑅)) |
| 30 | 29 | fveq2d 5587 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑏 ∈ (ℕ0
↑𝑚 𝐼)) ∧ (𝑋‘𝑏) = (0g‘𝑅)) → ((invg‘𝑅)‘(𝑋‘𝑏)) = ((invg‘𝑅)‘(0g‘𝑅))) |
| 31 | 16, 5 | grpinvid 13436 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ Grp →
((invg‘𝑅)‘(0g‘𝑅)) = (0g‘𝑅)) |
| 32 | 3, 31 | syl 14 |
. . . . . . . . . 10
⊢ (𝜑 →
((invg‘𝑅)‘(0g‘𝑅)) = (0g‘𝑅)) |
| 33 | 32 | ad2antrr 488 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑏 ∈ (ℕ0
↑𝑚 𝐼)) ∧ (𝑋‘𝑏) = (0g‘𝑅)) → ((invg‘𝑅)‘(0g‘𝑅)) = (0g‘𝑅)) |
| 34 | 30, 33 | eqtrd 2239 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑏 ∈ (ℕ0
↑𝑚 𝐼)) ∧ (𝑋‘𝑏) = (0g‘𝑅)) → ((invg‘𝑅)‘(𝑋‘𝑏)) = (0g‘𝑅)) |
| 35 | 22, 28, 34 | 3eqtrd 2243 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑏 ∈ (ℕ0
↑𝑚 𝐼)) ∧ (𝑋‘𝑏) = (0g‘𝑅)) → ((𝑁‘𝑋)‘𝑏) = (0g‘𝑅)) |
| 36 | 35 | ex 115 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑏 ∈ (ℕ0
↑𝑚 𝐼)) → ((𝑋‘𝑏) = (0g‘𝑅) → ((𝑁‘𝑋)‘𝑏) = (0g‘𝑅))) |
| 37 | 36 | imim2d 54 |
. . . . 5
⊢ ((𝜑 ∧ 𝑏 ∈ (ℕ0
↑𝑚 𝐼)) → ((∀𝑘 ∈ 𝐼 (𝑎‘𝑘) < (𝑏‘𝑘) → (𝑋‘𝑏) = (0g‘𝑅)) → (∀𝑘 ∈ 𝐼 (𝑎‘𝑘) < (𝑏‘𝑘) → ((𝑁‘𝑋)‘𝑏) = (0g‘𝑅)))) |
| 38 | 37 | ralimdva 2574 |
. . . 4
⊢ (𝜑 → (∀𝑏 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑘 ∈ 𝐼 (𝑎‘𝑘) < (𝑏‘𝑘) → (𝑋‘𝑏) = (0g‘𝑅)) → ∀𝑏 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑘 ∈ 𝐼 (𝑎‘𝑘) < (𝑏‘𝑘) → ((𝑁‘𝑋)‘𝑏) = (0g‘𝑅)))) |
| 39 | 38 | reximdv 2608 |
. . 3
⊢ (𝜑 → (∃𝑎 ∈ (ℕ0
↑𝑚 𝐼)∀𝑏 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑘 ∈ 𝐼 (𝑎‘𝑘) < (𝑏‘𝑘) → (𝑋‘𝑏) = (0g‘𝑅)) → ∃𝑎 ∈ (ℕ0
↑𝑚 𝐼)∀𝑏 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑘 ∈ 𝐼 (𝑎‘𝑘) < (𝑏‘𝑘) → ((𝑁‘𝑋)‘𝑏) = (0g‘𝑅)))) |
| 40 | 20, 39 | mpd 13 |
. 2
⊢ (𝜑 → ∃𝑎 ∈ (ℕ0
↑𝑚 𝐼)∀𝑏 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑘 ∈ 𝐼 (𝑎‘𝑘) < (𝑏‘𝑘) → ((𝑁‘𝑋)‘𝑏) = (0g‘𝑅))) |
| 41 | 8, 1, 6, 16, 9 | mplelbascoe 14498 |
. . 3
⊢ ((𝐼 ∈ Fin ∧ 𝑅 ∈ Grp) → ((𝑁‘𝑋) ∈ 𝑈 ↔ ((𝑁‘𝑋) ∈ (Base‘𝑆) ∧ ∃𝑎 ∈ (ℕ0
↑𝑚 𝐼)∀𝑏 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑘 ∈ 𝐼 (𝑎‘𝑘) < (𝑏‘𝑘) → ((𝑁‘𝑋)‘𝑏) = (0g‘𝑅))))) |
| 42 | 2, 3, 41 | syl2anc 411 |
. 2
⊢ (𝜑 → ((𝑁‘𝑋) ∈ 𝑈 ↔ ((𝑁‘𝑋) ∈ (Base‘𝑆) ∧ ∃𝑎 ∈ (ℕ0
↑𝑚 𝐼)∀𝑏 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑘 ∈ 𝐼 (𝑎‘𝑘) < (𝑏‘𝑘) → ((𝑁‘𝑋)‘𝑏) = (0g‘𝑅))))) |
| 43 | 15, 40, 42 | mpbir2and 947 |
1
⊢ (𝜑 → (𝑁‘𝑋) ∈ 𝑈) |