ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4sqlem19 Unicode version

Theorem 4sqlem19 12444
Description: Lemma for 4sq 12445. The proof is by strong induction - we show that if all the integers less than  k are in  S, then  k is as well. In this part of the proof we do the induction argument and dispense with all the cases except the odd prime case, which is sent to 4sqlem18 12443. If  k is  0 ,  1 ,  2, we show  k  e.  S directly; otherwise if  k is composite,  k is the product of two numbers less than it (and hence in  S by assumption), so by mul4sq 12429  k  e.  S. (Contributed by Mario Carneiro, 14-Jul-2014.) (Revised by Mario Carneiro, 20-Jun-2015.)
Hypothesis
Ref Expression
4sqlem11.1  |-  S  =  { n  |  E. x  e.  ZZ  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) }
Assertion
Ref Expression
4sqlem19  |-  NN0  =  S
Distinct variable groups:    S, n    w, n, x, y, z
Allowed substitution hints:    S( x, y, z, w)

Proof of Theorem 4sqlem19
Dummy variables  i  j  k  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnn0 9209 . . . 4  |-  ( k  e.  NN0  <->  ( k  e.  NN  \/  k  =  0 ) )
2 eleq1 2252 . . . . . 6  |-  ( j  =  1  ->  (
j  e.  S  <->  1  e.  S ) )
3 eleq1 2252 . . . . . 6  |-  ( j  =  m  ->  (
j  e.  S  <->  m  e.  S ) )
4 eleq1 2252 . . . . . 6  |-  ( j  =  i  ->  (
j  e.  S  <->  i  e.  S ) )
5 eleq1 2252 . . . . . 6  |-  ( j  =  ( m  x.  i )  ->  (
j  e.  S  <->  ( m  x.  i )  e.  S
) )
6 eleq1 2252 . . . . . 6  |-  ( j  =  k  ->  (
j  e.  S  <->  k  e.  S ) )
7 abs1 11116 . . . . . . . . . . 11  |-  ( abs `  1 )  =  1
87oveq1i 5907 . . . . . . . . . 10  |-  ( ( abs `  1 ) ^ 2 )  =  ( 1 ^ 2 )
9 sq1 10648 . . . . . . . . . 10  |-  ( 1 ^ 2 )  =  1
108, 9eqtri 2210 . . . . . . . . 9  |-  ( ( abs `  1 ) ^ 2 )  =  1
11 abs0 11102 . . . . . . . . . . 11  |-  ( abs `  0 )  =  0
1211oveq1i 5907 . . . . . . . . . 10  |-  ( ( abs `  0 ) ^ 2 )  =  ( 0 ^ 2 )
13 sq0 10645 . . . . . . . . . 10  |-  ( 0 ^ 2 )  =  0
1412, 13eqtri 2210 . . . . . . . . 9  |-  ( ( abs `  0 ) ^ 2 )  =  0
1510, 14oveq12i 5909 . . . . . . . 8  |-  ( ( ( abs `  1
) ^ 2 )  +  ( ( abs `  0 ) ^
2 ) )  =  ( 1  +  0 )
16 1p0e1 9066 . . . . . . . 8  |-  ( 1  +  0 )  =  1
1715, 16eqtri 2210 . . . . . . 7  |-  ( ( ( abs `  1
) ^ 2 )  +  ( ( abs `  0 ) ^
2 ) )  =  1
18 1z 9310 . . . . . . . . 9  |-  1  e.  ZZ
19 zgz 12408 . . . . . . . . 9  |-  ( 1  e.  ZZ  ->  1  e.  ZZ[_i]
)
2018, 19ax-mp 5 . . . . . . . 8  |-  1  e.  ZZ[_i]
21 0z 9295 . . . . . . . . 9  |-  0  e.  ZZ
22 zgz 12408 . . . . . . . . 9  |-  ( 0  e.  ZZ  ->  0  e.  ZZ[_i]
)
2321, 22ax-mp 5 . . . . . . . 8  |-  0  e.  ZZ[_i]
24 4sqlem11.1 . . . . . . . . 9  |-  S  =  { n  |  E. x  e.  ZZ  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) }
25244sqlem4a 12426 . . . . . . . 8  |-  ( ( 1  e.  ZZ[_i]  /\  0  e.  ZZ[_i]
)  ->  ( (
( abs `  1
) ^ 2 )  +  ( ( abs `  0 ) ^
2 ) )  e.  S )
2620, 23, 25mp2an 426 . . . . . . 7  |-  ( ( ( abs `  1
) ^ 2 )  +  ( ( abs `  0 ) ^
2 ) )  e.  S
2717, 26eqeltrri 2263 . . . . . 6  |-  1  e.  S
2810, 10oveq12i 5909 . . . . . . . . . 10  |-  ( ( ( abs `  1
) ^ 2 )  +  ( ( abs `  1 ) ^
2 ) )  =  ( 1  +  1 )
29 df-2 9009 . . . . . . . . . 10  |-  2  =  ( 1  +  1 )
3028, 29eqtr4i 2213 . . . . . . . . 9  |-  ( ( ( abs `  1
) ^ 2 )  +  ( ( abs `  1 ) ^
2 ) )  =  2
31244sqlem4a 12426 . . . . . . . . . 10  |-  ( ( 1  e.  ZZ[_i]  /\  1  e.  ZZ[_i]
)  ->  ( (
( abs `  1
) ^ 2 )  +  ( ( abs `  1 ) ^
2 ) )  e.  S )
3220, 20, 31mp2an 426 . . . . . . . . 9  |-  ( ( ( abs `  1
) ^ 2 )  +  ( ( abs `  1 ) ^
2 ) )  e.  S
3330, 32eqeltrri 2263 . . . . . . . 8  |-  2  e.  S
34 eleq1 2252 . . . . . . . . 9  |-  ( j  =  2  ->  (
j  e.  S  <->  2  e.  S ) )
3534adantl 277 . . . . . . . 8  |-  ( ( ( j  e.  Prime  /\ 
A. m  e.  ( 1 ... ( j  -  1 ) ) m  e.  S )  /\  j  =  2 )  ->  ( j  e.  S  <->  2  e.  S
) )
3633, 35mpbiri 168 . . . . . . 7  |-  ( ( ( j  e.  Prime  /\ 
A. m  e.  ( 1 ... ( j  -  1 ) ) m  e.  S )  /\  j  =  2 )  ->  j  e.  S )
37 eldifsn 3734 . . . . . . . . 9  |-  ( j  e.  ( Prime  \  {
2 } )  <->  ( j  e.  Prime  /\  j  =/=  2 ) )
38 oddprm 12294 . . . . . . . . . . 11  |-  ( j  e.  ( Prime  \  {
2 } )  -> 
( ( j  - 
1 )  /  2
)  e.  NN )
3938adantr 276 . . . . . . . . . 10  |-  ( ( j  e.  ( Prime  \  { 2 } )  /\  A. m  e.  ( 1 ... (
j  -  1 ) ) m  e.  S
)  ->  ( (
j  -  1 )  /  2 )  e.  NN )
40 eldifi 3272 . . . . . . . . . . . . . . . 16  |-  ( j  e.  ( Prime  \  {
2 } )  -> 
j  e.  Prime )
4140adantr 276 . . . . . . . . . . . . . . 15  |-  ( ( j  e.  ( Prime  \  { 2 } )  /\  A. m  e.  ( 1 ... (
j  -  1 ) ) m  e.  S
)  ->  j  e.  Prime )
42 prmnn 12145 . . . . . . . . . . . . . . 15  |-  ( j  e.  Prime  ->  j  e.  NN )
43 nncn 8958 . . . . . . . . . . . . . . 15  |-  ( j  e.  NN  ->  j  e.  CC )
4441, 42, 433syl 17 . . . . . . . . . . . . . 14  |-  ( ( j  e.  ( Prime  \  { 2 } )  /\  A. m  e.  ( 1 ... (
j  -  1 ) ) m  e.  S
)  ->  j  e.  CC )
45 ax-1cn 7935 . . . . . . . . . . . . . 14  |-  1  e.  CC
46 subcl 8187 . . . . . . . . . . . . . 14  |-  ( ( j  e.  CC  /\  1  e.  CC )  ->  ( j  -  1 )  e.  CC )
4744, 45, 46sylancl 413 . . . . . . . . . . . . 13  |-  ( ( j  e.  ( Prime  \  { 2 } )  /\  A. m  e.  ( 1 ... (
j  -  1 ) ) m  e.  S
)  ->  ( j  -  1 )  e.  CC )
48 2cnd 9023 . . . . . . . . . . . . 13  |-  ( ( j  e.  ( Prime  \  { 2 } )  /\  A. m  e.  ( 1 ... (
j  -  1 ) ) m  e.  S
)  ->  2  e.  CC )
49 2ap0 9043 . . . . . . . . . . . . . 14  |-  2 #  0
5049a1i 9 . . . . . . . . . . . . 13  |-  ( ( j  e.  ( Prime  \  { 2 } )  /\  A. m  e.  ( 1 ... (
j  -  1 ) ) m  e.  S
)  ->  2 #  0
)
5147, 48, 50divcanap2d 8780 . . . . . . . . . . . 12  |-  ( ( j  e.  ( Prime  \  { 2 } )  /\  A. m  e.  ( 1 ... (
j  -  1 ) ) m  e.  S
)  ->  ( 2  x.  ( ( j  -  1 )  / 
2 ) )  =  ( j  -  1 ) )
5251oveq1d 5912 . . . . . . . . . . 11  |-  ( ( j  e.  ( Prime  \  { 2 } )  /\  A. m  e.  ( 1 ... (
j  -  1 ) ) m  e.  S
)  ->  ( (
2  x.  ( ( j  -  1 )  /  2 ) )  +  1 )  =  ( ( j  - 
1 )  +  1 ) )
53 npcan 8197 . . . . . . . . . . . 12  |-  ( ( j  e.  CC  /\  1  e.  CC )  ->  ( ( j  - 
1 )  +  1 )  =  j )
5444, 45, 53sylancl 413 . . . . . . . . . . 11  |-  ( ( j  e.  ( Prime  \  { 2 } )  /\  A. m  e.  ( 1 ... (
j  -  1 ) ) m  e.  S
)  ->  ( (
j  -  1 )  +  1 )  =  j )
5552, 54eqtr2d 2223 . . . . . . . . . 10  |-  ( ( j  e.  ( Prime  \  { 2 } )  /\  A. m  e.  ( 1 ... (
j  -  1 ) ) m  e.  S
)  ->  j  =  ( ( 2  x.  ( ( j  - 
1 )  /  2
) )  +  1 ) )
5651oveq2d 5913 . . . . . . . . . . . 12  |-  ( ( j  e.  ( Prime  \  { 2 } )  /\  A. m  e.  ( 1 ... (
j  -  1 ) ) m  e.  S
)  ->  ( 0 ... ( 2  x.  ( ( j  - 
1 )  /  2
) ) )  =  ( 0 ... (
j  -  1 ) ) )
57 nnm1nn0 9248 . . . . . . . . . . . . . . 15  |-  ( j  e.  NN  ->  (
j  -  1 )  e.  NN0 )
5841, 42, 573syl 17 . . . . . . . . . . . . . 14  |-  ( ( j  e.  ( Prime  \  { 2 } )  /\  A. m  e.  ( 1 ... (
j  -  1 ) ) m  e.  S
)  ->  ( j  -  1 )  e. 
NN0 )
59 elnn0uz 9597 . . . . . . . . . . . . . 14  |-  ( ( j  -  1 )  e.  NN0  <->  ( j  - 
1 )  e.  (
ZZ>= `  0 ) )
6058, 59sylib 122 . . . . . . . . . . . . 13  |-  ( ( j  e.  ( Prime  \  { 2 } )  /\  A. m  e.  ( 1 ... (
j  -  1 ) ) m  e.  S
)  ->  ( j  -  1 )  e.  ( ZZ>= `  0 )
)
61 eluzfz1 10063 . . . . . . . . . . . . 13  |-  ( ( j  -  1 )  e.  ( ZZ>= `  0
)  ->  0  e.  ( 0 ... (
j  -  1 ) ) )
62 fzsplit 10083 . . . . . . . . . . . . 13  |-  ( 0  e.  ( 0 ... ( j  -  1 ) )  ->  (
0 ... ( j  - 
1 ) )  =  ( ( 0 ... 0 )  u.  (
( 0  +  1 ) ... ( j  -  1 ) ) ) )
6360, 61, 623syl 17 . . . . . . . . . . . 12  |-  ( ( j  e.  ( Prime  \  { 2 } )  /\  A. m  e.  ( 1 ... (
j  -  1 ) ) m  e.  S
)  ->  ( 0 ... ( j  - 
1 ) )  =  ( ( 0 ... 0 )  u.  (
( 0  +  1 ) ... ( j  -  1 ) ) ) )
6456, 63eqtrd 2222 . . . . . . . . . . 11  |-  ( ( j  e.  ( Prime  \  { 2 } )  /\  A. m  e.  ( 1 ... (
j  -  1 ) ) m  e.  S
)  ->  ( 0 ... ( 2  x.  ( ( j  - 
1 )  /  2
) ) )  =  ( ( 0 ... 0 )  u.  (
( 0  +  1 ) ... ( j  -  1 ) ) ) )
65 fz0sn 10153 . . . . . . . . . . . . . 14  |-  ( 0 ... 0 )  =  { 0 }
6614, 14oveq12i 5909 . . . . . . . . . . . . . . . . 17  |-  ( ( ( abs `  0
) ^ 2 )  +  ( ( abs `  0 ) ^
2 ) )  =  ( 0  +  0 )
67 00id 8129 . . . . . . . . . . . . . . . . 17  |-  ( 0  +  0 )  =  0
6866, 67eqtri 2210 . . . . . . . . . . . . . . . 16  |-  ( ( ( abs `  0
) ^ 2 )  +  ( ( abs `  0 ) ^
2 ) )  =  0
69244sqlem4a 12426 . . . . . . . . . . . . . . . . 17  |-  ( ( 0  e.  ZZ[_i]  /\  0  e.  ZZ[_i]
)  ->  ( (
( abs `  0
) ^ 2 )  +  ( ( abs `  0 ) ^
2 ) )  e.  S )
7023, 23, 69mp2an 426 . . . . . . . . . . . . . . . 16  |-  ( ( ( abs `  0
) ^ 2 )  +  ( ( abs `  0 ) ^
2 ) )  e.  S
7168, 70eqeltrri 2263 . . . . . . . . . . . . . . 15  |-  0  e.  S
72 snssi 3751 . . . . . . . . . . . . . . 15  |-  ( 0  e.  S  ->  { 0 }  C_  S )
7371, 72ax-mp 5 . . . . . . . . . . . . . 14  |-  { 0 }  C_  S
7465, 73eqsstri 3202 . . . . . . . . . . . . 13  |-  ( 0 ... 0 )  C_  S
7574a1i 9 . . . . . . . . . . . 12  |-  ( ( j  e.  ( Prime  \  { 2 } )  /\  A. m  e.  ( 1 ... (
j  -  1 ) ) m  e.  S
)  ->  ( 0 ... 0 )  C_  S )
76 0p1e1 9064 . . . . . . . . . . . . . 14  |-  ( 0  +  1 )  =  1
7776oveq1i 5907 . . . . . . . . . . . . 13  |-  ( ( 0  +  1 ) ... ( j  - 
1 ) )  =  ( 1 ... (
j  -  1 ) )
78 simpr 110 . . . . . . . . . . . . . 14  |-  ( ( j  e.  ( Prime  \  { 2 } )  /\  A. m  e.  ( 1 ... (
j  -  1 ) ) m  e.  S
)  ->  A. m  e.  ( 1 ... (
j  -  1 ) ) m  e.  S
)
79 dfss3 3160 . . . . . . . . . . . . . 14  |-  ( ( 1 ... ( j  -  1 ) ) 
C_  S  <->  A. m  e.  ( 1 ... (
j  -  1 ) ) m  e.  S
)
8078, 79sylibr 134 . . . . . . . . . . . . 13  |-  ( ( j  e.  ( Prime  \  { 2 } )  /\  A. m  e.  ( 1 ... (
j  -  1 ) ) m  e.  S
)  ->  ( 1 ... ( j  - 
1 ) )  C_  S )
8177, 80eqsstrid 3216 . . . . . . . . . . . 12  |-  ( ( j  e.  ( Prime  \  { 2 } )  /\  A. m  e.  ( 1 ... (
j  -  1 ) ) m  e.  S
)  ->  ( (
0  +  1 ) ... ( j  - 
1 ) )  C_  S )
8275, 81unssd 3326 . . . . . . . . . . 11  |-  ( ( j  e.  ( Prime  \  { 2 } )  /\  A. m  e.  ( 1 ... (
j  -  1 ) ) m  e.  S
)  ->  ( (
0 ... 0 )  u.  ( ( 0  +  1 ) ... (
j  -  1 ) ) )  C_  S
)
8364, 82eqsstrd 3206 . . . . . . . . . 10  |-  ( ( j  e.  ( Prime  \  { 2 } )  /\  A. m  e.  ( 1 ... (
j  -  1 ) ) m  e.  S
)  ->  ( 0 ... ( 2  x.  ( ( j  - 
1 )  /  2
) ) )  C_  S )
84 oveq1 5904 . . . . . . . . . . . 12  |-  ( k  =  i  ->  (
k  x.  j )  =  ( i  x.  j ) )
8584eleq1d 2258 . . . . . . . . . . 11  |-  ( k  =  i  ->  (
( k  x.  j
)  e.  S  <->  ( i  x.  j )  e.  S
) )
8685cbvrabv 2751 . . . . . . . . . 10  |-  { k  e.  NN  |  ( k  x.  j )  e.  S }  =  { i  e.  NN  |  ( i  x.  j )  e.  S }
87 eqid 2189 . . . . . . . . . 10  |- inf ( { k  e.  NN  | 
( k  x.  j
)  e.  S } ,  RR ,  <  )  = inf ( { k  e.  NN  |  ( k  x.  j )  e.  S } ,  RR ,  <  )
8824, 39, 55, 41, 83, 86, 874sqlem18 12443 . . . . . . . . 9  |-  ( ( j  e.  ( Prime  \  { 2 } )  /\  A. m  e.  ( 1 ... (
j  -  1 ) ) m  e.  S
)  ->  j  e.  S )
8937, 88sylanbr 285 . . . . . . . 8  |-  ( ( ( j  e.  Prime  /\  j  =/=  2 )  /\  A. m  e.  ( 1 ... (
j  -  1 ) ) m  e.  S
)  ->  j  e.  S )
9089an32s 568 . . . . . . 7  |-  ( ( ( j  e.  Prime  /\ 
A. m  e.  ( 1 ... ( j  -  1 ) ) m  e.  S )  /\  j  =/=  2
)  ->  j  e.  S )
91 prmz 12146 . . . . . . . . . 10  |-  ( j  e.  Prime  ->  j  e.  ZZ )
9291adantr 276 . . . . . . . . 9  |-  ( ( j  e.  Prime  /\  A. m  e.  ( 1 ... ( j  - 
1 ) ) m  e.  S )  -> 
j  e.  ZZ )
93 2z 9312 . . . . . . . . 9  |-  2  e.  ZZ
94 zdceq 9359 . . . . . . . . 9  |-  ( ( j  e.  ZZ  /\  2  e.  ZZ )  -> DECID  j  =  2 )
9592, 93, 94sylancl 413 . . . . . . . 8  |-  ( ( j  e.  Prime  /\  A. m  e.  ( 1 ... ( j  - 
1 ) ) m  e.  S )  -> DECID  j  =  2 )
96 dcne 2371 . . . . . . . 8  |-  (DECID  j  =  2  <->  ( j  =  2  \/  j  =/=  2 ) )
9795, 96sylib 122 . . . . . . 7  |-  ( ( j  e.  Prime  /\  A. m  e.  ( 1 ... ( j  - 
1 ) ) m  e.  S )  -> 
( j  =  2  \/  j  =/=  2
) )
9836, 90, 97mpjaodan 799 . . . . . 6  |-  ( ( j  e.  Prime  /\  A. m  e.  ( 1 ... ( j  - 
1 ) ) m  e.  S )  -> 
j  e.  S )
9924mul4sq 12429 . . . . . . 7  |-  ( ( m  e.  S  /\  i  e.  S )  ->  ( m  x.  i
)  e.  S )
10099a1i 9 . . . . . 6  |-  ( ( m  e.  ( ZZ>= ` 
2 )  /\  i  e.  ( ZZ>= `  2 )
)  ->  ( (
m  e.  S  /\  i  e.  S )  ->  ( m  x.  i
)  e.  S ) )
1012, 3, 4, 5, 6, 27, 98, 100prmind2 12155 . . . . 5  |-  ( k  e.  NN  ->  k  e.  S )
102 id 19 . . . . . 6  |-  ( k  =  0  ->  k  =  0 )
103102, 71eqeltrdi 2280 . . . . 5  |-  ( k  =  0  ->  k  e.  S )
104101, 103jaoi 717 . . . 4  |-  ( ( k  e.  NN  \/  k  =  0 )  ->  k  e.  S
)
1051, 104sylbi 121 . . 3  |-  ( k  e.  NN0  ->  k  e.  S )
106105ssriv 3174 . 2  |-  NN0  C_  S
107244sqlem1 12423 . 2  |-  S  C_  NN0
108106, 107eqssi 3186 1  |-  NN0  =  S
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709  DECID wdc 835    = wceq 1364    e. wcel 2160   {cab 2175    =/= wne 2360   A.wral 2468   E.wrex 2469   {crab 2472    \ cdif 3141    u. cun 3142    C_ wss 3144   {csn 3607   class class class wbr 4018   ` cfv 5235  (class class class)co 5897  infcinf 7013   CCcc 7840   RRcr 7841   0cc0 7842   1c1 7843    + caddc 7845    x. cmul 7847    < clt 8023    - cmin 8159   # cap 8569    / cdiv 8660   NNcn 8950   2c2 9001   NN0cn0 9207   ZZcz 9284   ZZ>=cuz 9559   ...cfz 10040   ^cexp 10553   abscabs 11041   Primecprime 12142   ZZ[_i]cgz 12404
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605  ax-cnex 7933  ax-resscn 7934  ax-1cn 7935  ax-1re 7936  ax-icn 7937  ax-addcl 7938  ax-addrcl 7939  ax-mulcl 7940  ax-mulrcl 7941  ax-addcom 7942  ax-mulcom 7943  ax-addass 7944  ax-mulass 7945  ax-distr 7946  ax-i2m1 7947  ax-0lt1 7948  ax-1rid 7949  ax-0id 7950  ax-rnegex 7951  ax-precex 7952  ax-cnre 7953  ax-pre-ltirr 7954  ax-pre-ltwlin 7955  ax-pre-lttrn 7956  ax-pre-apti 7957  ax-pre-ltadd 7958  ax-pre-mulgt0 7959  ax-pre-mulext 7960  ax-arch 7961  ax-caucvg 7962
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-xor 1387  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-po 4314  df-iso 4315  df-iord 4384  df-on 4386  df-ilim 4387  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-isom 5244  df-riota 5852  df-ov 5900  df-oprab 5901  df-mpo 5902  df-1st 6166  df-2nd 6167  df-recs 6331  df-irdg 6396  df-frec 6417  df-1o 6442  df-2o 6443  df-oadd 6446  df-er 6560  df-en 6768  df-dom 6769  df-fin 6770  df-sup 7014  df-inf 7015  df-pnf 8025  df-mnf 8026  df-xr 8027  df-ltxr 8028  df-le 8029  df-sub 8161  df-neg 8162  df-reap 8563  df-ap 8570  df-div 8661  df-inn 8951  df-2 9009  df-3 9010  df-4 9011  df-n0 9208  df-z 9285  df-uz 9560  df-q 9652  df-rp 9686  df-fz 10041  df-fzo 10175  df-fl 10303  df-mod 10356  df-seqfrec 10479  df-exp 10554  df-ihash 10791  df-cj 10886  df-re 10887  df-im 10888  df-rsqrt 11042  df-abs 11043  df-dvds 11830  df-gcd 11979  df-prm 12143  df-gz 12405
This theorem is referenced by:  4sq  12445
  Copyright terms: Public domain W3C validator