ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4sqlem19 Unicode version

Theorem 4sqlem19 12765
Description: Lemma for 4sq 12766. The proof is by strong induction - we show that if all the integers less than  k are in  S, then  k is as well. In this part of the proof we do the induction argument and dispense with all the cases except the odd prime case, which is sent to 4sqlem18 12764. If  k is  0 ,  1 ,  2, we show  k  e.  S directly; otherwise if  k is composite,  k is the product of two numbers less than it (and hence in  S by assumption), so by mul4sq 12750  k  e.  S. (Contributed by Mario Carneiro, 14-Jul-2014.) (Revised by Mario Carneiro, 20-Jun-2015.)
Hypothesis
Ref Expression
4sqlem11.1  |-  S  =  { n  |  E. x  e.  ZZ  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) }
Assertion
Ref Expression
4sqlem19  |-  NN0  =  S
Distinct variable groups:    S, n    w, n, x, y, z
Allowed substitution hints:    S( x, y, z, w)

Proof of Theorem 4sqlem19
Dummy variables  i  j  k  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnn0 9299 . . . 4  |-  ( k  e.  NN0  <->  ( k  e.  NN  \/  k  =  0 ) )
2 eleq1 2268 . . . . . 6  |-  ( j  =  1  ->  (
j  e.  S  <->  1  e.  S ) )
3 eleq1 2268 . . . . . 6  |-  ( j  =  m  ->  (
j  e.  S  <->  m  e.  S ) )
4 eleq1 2268 . . . . . 6  |-  ( j  =  i  ->  (
j  e.  S  <->  i  e.  S ) )
5 eleq1 2268 . . . . . 6  |-  ( j  =  ( m  x.  i )  ->  (
j  e.  S  <->  ( m  x.  i )  e.  S
) )
6 eleq1 2268 . . . . . 6  |-  ( j  =  k  ->  (
j  e.  S  <->  k  e.  S ) )
7 abs1 11416 . . . . . . . . . . 11  |-  ( abs `  1 )  =  1
87oveq1i 5956 . . . . . . . . . 10  |-  ( ( abs `  1 ) ^ 2 )  =  ( 1 ^ 2 )
9 sq1 10780 . . . . . . . . . 10  |-  ( 1 ^ 2 )  =  1
108, 9eqtri 2226 . . . . . . . . 9  |-  ( ( abs `  1 ) ^ 2 )  =  1
11 abs0 11402 . . . . . . . . . . 11  |-  ( abs `  0 )  =  0
1211oveq1i 5956 . . . . . . . . . 10  |-  ( ( abs `  0 ) ^ 2 )  =  ( 0 ^ 2 )
13 sq0 10777 . . . . . . . . . 10  |-  ( 0 ^ 2 )  =  0
1412, 13eqtri 2226 . . . . . . . . 9  |-  ( ( abs `  0 ) ^ 2 )  =  0
1510, 14oveq12i 5958 . . . . . . . 8  |-  ( ( ( abs `  1
) ^ 2 )  +  ( ( abs `  0 ) ^
2 ) )  =  ( 1  +  0 )
16 1p0e1 9154 . . . . . . . 8  |-  ( 1  +  0 )  =  1
1715, 16eqtri 2226 . . . . . . 7  |-  ( ( ( abs `  1
) ^ 2 )  +  ( ( abs `  0 ) ^
2 ) )  =  1
18 1z 9400 . . . . . . . . 9  |-  1  e.  ZZ
19 zgz 12729 . . . . . . . . 9  |-  ( 1  e.  ZZ  ->  1  e.  ZZ[_i]
)
2018, 19ax-mp 5 . . . . . . . 8  |-  1  e.  ZZ[_i]
21 0z 9385 . . . . . . . . 9  |-  0  e.  ZZ
22 zgz 12729 . . . . . . . . 9  |-  ( 0  e.  ZZ  ->  0  e.  ZZ[_i]
)
2321, 22ax-mp 5 . . . . . . . 8  |-  0  e.  ZZ[_i]
24 4sqlem11.1 . . . . . . . . 9  |-  S  =  { n  |  E. x  e.  ZZ  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) }
25244sqlem4a 12747 . . . . . . . 8  |-  ( ( 1  e.  ZZ[_i]  /\  0  e.  ZZ[_i]
)  ->  ( (
( abs `  1
) ^ 2 )  +  ( ( abs `  0 ) ^
2 ) )  e.  S )
2620, 23, 25mp2an 426 . . . . . . 7  |-  ( ( ( abs `  1
) ^ 2 )  +  ( ( abs `  0 ) ^
2 ) )  e.  S
2717, 26eqeltrri 2279 . . . . . 6  |-  1  e.  S
2810, 10oveq12i 5958 . . . . . . . . . 10  |-  ( ( ( abs `  1
) ^ 2 )  +  ( ( abs `  1 ) ^
2 ) )  =  ( 1  +  1 )
29 df-2 9097 . . . . . . . . . 10  |-  2  =  ( 1  +  1 )
3028, 29eqtr4i 2229 . . . . . . . . 9  |-  ( ( ( abs `  1
) ^ 2 )  +  ( ( abs `  1 ) ^
2 ) )  =  2
31244sqlem4a 12747 . . . . . . . . . 10  |-  ( ( 1  e.  ZZ[_i]  /\  1  e.  ZZ[_i]
)  ->  ( (
( abs `  1
) ^ 2 )  +  ( ( abs `  1 ) ^
2 ) )  e.  S )
3220, 20, 31mp2an 426 . . . . . . . . 9  |-  ( ( ( abs `  1
) ^ 2 )  +  ( ( abs `  1 ) ^
2 ) )  e.  S
3330, 32eqeltrri 2279 . . . . . . . 8  |-  2  e.  S
34 eleq1 2268 . . . . . . . . 9  |-  ( j  =  2  ->  (
j  e.  S  <->  2  e.  S ) )
3534adantl 277 . . . . . . . 8  |-  ( ( ( j  e.  Prime  /\ 
A. m  e.  ( 1 ... ( j  -  1 ) ) m  e.  S )  /\  j  =  2 )  ->  ( j  e.  S  <->  2  e.  S
) )
3633, 35mpbiri 168 . . . . . . 7  |-  ( ( ( j  e.  Prime  /\ 
A. m  e.  ( 1 ... ( j  -  1 ) ) m  e.  S )  /\  j  =  2 )  ->  j  e.  S )
37 eldifsn 3760 . . . . . . . . 9  |-  ( j  e.  ( Prime  \  {
2 } )  <->  ( j  e.  Prime  /\  j  =/=  2 ) )
38 oddprm 12615 . . . . . . . . . . 11  |-  ( j  e.  ( Prime  \  {
2 } )  -> 
( ( j  - 
1 )  /  2
)  e.  NN )
3938adantr 276 . . . . . . . . . 10  |-  ( ( j  e.  ( Prime  \  { 2 } )  /\  A. m  e.  ( 1 ... (
j  -  1 ) ) m  e.  S
)  ->  ( (
j  -  1 )  /  2 )  e.  NN )
40 eldifi 3295 . . . . . . . . . . . . . . . 16  |-  ( j  e.  ( Prime  \  {
2 } )  -> 
j  e.  Prime )
4140adantr 276 . . . . . . . . . . . . . . 15  |-  ( ( j  e.  ( Prime  \  { 2 } )  /\  A. m  e.  ( 1 ... (
j  -  1 ) ) m  e.  S
)  ->  j  e.  Prime )
42 prmnn 12465 . . . . . . . . . . . . . . 15  |-  ( j  e.  Prime  ->  j  e.  NN )
43 nncn 9046 . . . . . . . . . . . . . . 15  |-  ( j  e.  NN  ->  j  e.  CC )
4441, 42, 433syl 17 . . . . . . . . . . . . . 14  |-  ( ( j  e.  ( Prime  \  { 2 } )  /\  A. m  e.  ( 1 ... (
j  -  1 ) ) m  e.  S
)  ->  j  e.  CC )
45 ax-1cn 8020 . . . . . . . . . . . . . 14  |-  1  e.  CC
46 subcl 8273 . . . . . . . . . . . . . 14  |-  ( ( j  e.  CC  /\  1  e.  CC )  ->  ( j  -  1 )  e.  CC )
4744, 45, 46sylancl 413 . . . . . . . . . . . . 13  |-  ( ( j  e.  ( Prime  \  { 2 } )  /\  A. m  e.  ( 1 ... (
j  -  1 ) ) m  e.  S
)  ->  ( j  -  1 )  e.  CC )
48 2cnd 9111 . . . . . . . . . . . . 13  |-  ( ( j  e.  ( Prime  \  { 2 } )  /\  A. m  e.  ( 1 ... (
j  -  1 ) ) m  e.  S
)  ->  2  e.  CC )
49 2ap0 9131 . . . . . . . . . . . . . 14  |-  2 #  0
5049a1i 9 . . . . . . . . . . . . 13  |-  ( ( j  e.  ( Prime  \  { 2 } )  /\  A. m  e.  ( 1 ... (
j  -  1 ) ) m  e.  S
)  ->  2 #  0
)
5147, 48, 50divcanap2d 8867 . . . . . . . . . . . 12  |-  ( ( j  e.  ( Prime  \  { 2 } )  /\  A. m  e.  ( 1 ... (
j  -  1 ) ) m  e.  S
)  ->  ( 2  x.  ( ( j  -  1 )  / 
2 ) )  =  ( j  -  1 ) )
5251oveq1d 5961 . . . . . . . . . . 11  |-  ( ( j  e.  ( Prime  \  { 2 } )  /\  A. m  e.  ( 1 ... (
j  -  1 ) ) m  e.  S
)  ->  ( (
2  x.  ( ( j  -  1 )  /  2 ) )  +  1 )  =  ( ( j  - 
1 )  +  1 ) )
53 npcan 8283 . . . . . . . . . . . 12  |-  ( ( j  e.  CC  /\  1  e.  CC )  ->  ( ( j  - 
1 )  +  1 )  =  j )
5444, 45, 53sylancl 413 . . . . . . . . . . 11  |-  ( ( j  e.  ( Prime  \  { 2 } )  /\  A. m  e.  ( 1 ... (
j  -  1 ) ) m  e.  S
)  ->  ( (
j  -  1 )  +  1 )  =  j )
5552, 54eqtr2d 2239 . . . . . . . . . 10  |-  ( ( j  e.  ( Prime  \  { 2 } )  /\  A. m  e.  ( 1 ... (
j  -  1 ) ) m  e.  S
)  ->  j  =  ( ( 2  x.  ( ( j  - 
1 )  /  2
) )  +  1 ) )
5651oveq2d 5962 . . . . . . . . . . . 12  |-  ( ( j  e.  ( Prime  \  { 2 } )  /\  A. m  e.  ( 1 ... (
j  -  1 ) ) m  e.  S
)  ->  ( 0 ... ( 2  x.  ( ( j  - 
1 )  /  2
) ) )  =  ( 0 ... (
j  -  1 ) ) )
57 nnm1nn0 9338 . . . . . . . . . . . . . . 15  |-  ( j  e.  NN  ->  (
j  -  1 )  e.  NN0 )
5841, 42, 573syl 17 . . . . . . . . . . . . . 14  |-  ( ( j  e.  ( Prime  \  { 2 } )  /\  A. m  e.  ( 1 ... (
j  -  1 ) ) m  e.  S
)  ->  ( j  -  1 )  e. 
NN0 )
59 elnn0uz 9688 . . . . . . . . . . . . . 14  |-  ( ( j  -  1 )  e.  NN0  <->  ( j  - 
1 )  e.  (
ZZ>= `  0 ) )
6058, 59sylib 122 . . . . . . . . . . . . 13  |-  ( ( j  e.  ( Prime  \  { 2 } )  /\  A. m  e.  ( 1 ... (
j  -  1 ) ) m  e.  S
)  ->  ( j  -  1 )  e.  ( ZZ>= `  0 )
)
61 eluzfz1 10155 . . . . . . . . . . . . 13  |-  ( ( j  -  1 )  e.  ( ZZ>= `  0
)  ->  0  e.  ( 0 ... (
j  -  1 ) ) )
62 fzsplit 10175 . . . . . . . . . . . . 13  |-  ( 0  e.  ( 0 ... ( j  -  1 ) )  ->  (
0 ... ( j  - 
1 ) )  =  ( ( 0 ... 0 )  u.  (
( 0  +  1 ) ... ( j  -  1 ) ) ) )
6360, 61, 623syl 17 . . . . . . . . . . . 12  |-  ( ( j  e.  ( Prime  \  { 2 } )  /\  A. m  e.  ( 1 ... (
j  -  1 ) ) m  e.  S
)  ->  ( 0 ... ( j  - 
1 ) )  =  ( ( 0 ... 0 )  u.  (
( 0  +  1 ) ... ( j  -  1 ) ) ) )
6456, 63eqtrd 2238 . . . . . . . . . . 11  |-  ( ( j  e.  ( Prime  \  { 2 } )  /\  A. m  e.  ( 1 ... (
j  -  1 ) ) m  e.  S
)  ->  ( 0 ... ( 2  x.  ( ( j  - 
1 )  /  2
) ) )  =  ( ( 0 ... 0 )  u.  (
( 0  +  1 ) ... ( j  -  1 ) ) ) )
65 fz0sn 10245 . . . . . . . . . . . . . 14  |-  ( 0 ... 0 )  =  { 0 }
6614, 14oveq12i 5958 . . . . . . . . . . . . . . . . 17  |-  ( ( ( abs `  0
) ^ 2 )  +  ( ( abs `  0 ) ^
2 ) )  =  ( 0  +  0 )
67 00id 8215 . . . . . . . . . . . . . . . . 17  |-  ( 0  +  0 )  =  0
6866, 67eqtri 2226 . . . . . . . . . . . . . . . 16  |-  ( ( ( abs `  0
) ^ 2 )  +  ( ( abs `  0 ) ^
2 ) )  =  0
69244sqlem4a 12747 . . . . . . . . . . . . . . . . 17  |-  ( ( 0  e.  ZZ[_i]  /\  0  e.  ZZ[_i]
)  ->  ( (
( abs `  0
) ^ 2 )  +  ( ( abs `  0 ) ^
2 ) )  e.  S )
7023, 23, 69mp2an 426 . . . . . . . . . . . . . . . 16  |-  ( ( ( abs `  0
) ^ 2 )  +  ( ( abs `  0 ) ^
2 ) )  e.  S
7168, 70eqeltrri 2279 . . . . . . . . . . . . . . 15  |-  0  e.  S
72 snssi 3777 . . . . . . . . . . . . . . 15  |-  ( 0  e.  S  ->  { 0 }  C_  S )
7371, 72ax-mp 5 . . . . . . . . . . . . . 14  |-  { 0 }  C_  S
7465, 73eqsstri 3225 . . . . . . . . . . . . 13  |-  ( 0 ... 0 )  C_  S
7574a1i 9 . . . . . . . . . . . 12  |-  ( ( j  e.  ( Prime  \  { 2 } )  /\  A. m  e.  ( 1 ... (
j  -  1 ) ) m  e.  S
)  ->  ( 0 ... 0 )  C_  S )
76 0p1e1 9152 . . . . . . . . . . . . . 14  |-  ( 0  +  1 )  =  1
7776oveq1i 5956 . . . . . . . . . . . . 13  |-  ( ( 0  +  1 ) ... ( j  - 
1 ) )  =  ( 1 ... (
j  -  1 ) )
78 simpr 110 . . . . . . . . . . . . . 14  |-  ( ( j  e.  ( Prime  \  { 2 } )  /\  A. m  e.  ( 1 ... (
j  -  1 ) ) m  e.  S
)  ->  A. m  e.  ( 1 ... (
j  -  1 ) ) m  e.  S
)
79 dfss3 3182 . . . . . . . . . . . . . 14  |-  ( ( 1 ... ( j  -  1 ) ) 
C_  S  <->  A. m  e.  ( 1 ... (
j  -  1 ) ) m  e.  S
)
8078, 79sylibr 134 . . . . . . . . . . . . 13  |-  ( ( j  e.  ( Prime  \  { 2 } )  /\  A. m  e.  ( 1 ... (
j  -  1 ) ) m  e.  S
)  ->  ( 1 ... ( j  - 
1 ) )  C_  S )
8177, 80eqsstrid 3239 . . . . . . . . . . . 12  |-  ( ( j  e.  ( Prime  \  { 2 } )  /\  A. m  e.  ( 1 ... (
j  -  1 ) ) m  e.  S
)  ->  ( (
0  +  1 ) ... ( j  - 
1 ) )  C_  S )
8275, 81unssd 3349 . . . . . . . . . . 11  |-  ( ( j  e.  ( Prime  \  { 2 } )  /\  A. m  e.  ( 1 ... (
j  -  1 ) ) m  e.  S
)  ->  ( (
0 ... 0 )  u.  ( ( 0  +  1 ) ... (
j  -  1 ) ) )  C_  S
)
8364, 82eqsstrd 3229 . . . . . . . . . 10  |-  ( ( j  e.  ( Prime  \  { 2 } )  /\  A. m  e.  ( 1 ... (
j  -  1 ) ) m  e.  S
)  ->  ( 0 ... ( 2  x.  ( ( j  - 
1 )  /  2
) ) )  C_  S )
84 oveq1 5953 . . . . . . . . . . . 12  |-  ( k  =  i  ->  (
k  x.  j )  =  ( i  x.  j ) )
8584eleq1d 2274 . . . . . . . . . . 11  |-  ( k  =  i  ->  (
( k  x.  j
)  e.  S  <->  ( i  x.  j )  e.  S
) )
8685cbvrabv 2771 . . . . . . . . . 10  |-  { k  e.  NN  |  ( k  x.  j )  e.  S }  =  { i  e.  NN  |  ( i  x.  j )  e.  S }
87 eqid 2205 . . . . . . . . . 10  |- inf ( { k  e.  NN  | 
( k  x.  j
)  e.  S } ,  RR ,  <  )  = inf ( { k  e.  NN  |  ( k  x.  j )  e.  S } ,  RR ,  <  )
8824, 39, 55, 41, 83, 86, 874sqlem18 12764 . . . . . . . . 9  |-  ( ( j  e.  ( Prime  \  { 2 } )  /\  A. m  e.  ( 1 ... (
j  -  1 ) ) m  e.  S
)  ->  j  e.  S )
8937, 88sylanbr 285 . . . . . . . 8  |-  ( ( ( j  e.  Prime  /\  j  =/=  2 )  /\  A. m  e.  ( 1 ... (
j  -  1 ) ) m  e.  S
)  ->  j  e.  S )
9089an32s 568 . . . . . . 7  |-  ( ( ( j  e.  Prime  /\ 
A. m  e.  ( 1 ... ( j  -  1 ) ) m  e.  S )  /\  j  =/=  2
)  ->  j  e.  S )
91 prmz 12466 . . . . . . . . . 10  |-  ( j  e.  Prime  ->  j  e.  ZZ )
9291adantr 276 . . . . . . . . 9  |-  ( ( j  e.  Prime  /\  A. m  e.  ( 1 ... ( j  - 
1 ) ) m  e.  S )  -> 
j  e.  ZZ )
93 2z 9402 . . . . . . . . 9  |-  2  e.  ZZ
94 zdceq 9450 . . . . . . . . 9  |-  ( ( j  e.  ZZ  /\  2  e.  ZZ )  -> DECID  j  =  2 )
9592, 93, 94sylancl 413 . . . . . . . 8  |-  ( ( j  e.  Prime  /\  A. m  e.  ( 1 ... ( j  - 
1 ) ) m  e.  S )  -> DECID  j  =  2 )
96 dcne 2387 . . . . . . . 8  |-  (DECID  j  =  2  <->  ( j  =  2  \/  j  =/=  2 ) )
9795, 96sylib 122 . . . . . . 7  |-  ( ( j  e.  Prime  /\  A. m  e.  ( 1 ... ( j  - 
1 ) ) m  e.  S )  -> 
( j  =  2  \/  j  =/=  2
) )
9836, 90, 97mpjaodan 800 . . . . . 6  |-  ( ( j  e.  Prime  /\  A. m  e.  ( 1 ... ( j  - 
1 ) ) m  e.  S )  -> 
j  e.  S )
9924mul4sq 12750 . . . . . . 7  |-  ( ( m  e.  S  /\  i  e.  S )  ->  ( m  x.  i
)  e.  S )
10099a1i 9 . . . . . 6  |-  ( ( m  e.  ( ZZ>= ` 
2 )  /\  i  e.  ( ZZ>= `  2 )
)  ->  ( (
m  e.  S  /\  i  e.  S )  ->  ( m  x.  i
)  e.  S ) )
1012, 3, 4, 5, 6, 27, 98, 100prmind2 12475 . . . . 5  |-  ( k  e.  NN  ->  k  e.  S )
102 id 19 . . . . . 6  |-  ( k  =  0  ->  k  =  0 )
103102, 71eqeltrdi 2296 . . . . 5  |-  ( k  =  0  ->  k  e.  S )
104101, 103jaoi 718 . . . 4  |-  ( ( k  e.  NN  \/  k  =  0 )  ->  k  e.  S
)
1051, 104sylbi 121 . . 3  |-  ( k  e.  NN0  ->  k  e.  S )
106105ssriv 3197 . 2  |-  NN0  C_  S
107244sqlem1 12744 . 2  |-  S  C_  NN0
108106, 107eqssi 3209 1  |-  NN0  =  S
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710  DECID wdc 836    = wceq 1373    e. wcel 2176   {cab 2191    =/= wne 2376   A.wral 2484   E.wrex 2485   {crab 2488    \ cdif 3163    u. cun 3164    C_ wss 3166   {csn 3633   class class class wbr 4045   ` cfv 5272  (class class class)co 5946  infcinf 7087   CCcc 7925   RRcr 7926   0cc0 7927   1c1 7928    + caddc 7930    x. cmul 7932    < clt 8109    - cmin 8245   # cap 8656    / cdiv 8747   NNcn 9038   2c2 9089   NN0cn0 9297   ZZcz 9374   ZZ>=cuz 9650   ...cfz 10132   ^cexp 10685   abscabs 11341   Primecprime 12462   ZZ[_i]cgz 12725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-iinf 4637  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-mulrcl 8026  ax-addcom 8027  ax-mulcom 8028  ax-addass 8029  ax-mulass 8030  ax-distr 8031  ax-i2m1 8032  ax-0lt1 8033  ax-1rid 8034  ax-0id 8035  ax-rnegex 8036  ax-precex 8037  ax-cnre 8038  ax-pre-ltirr 8039  ax-pre-ltwlin 8040  ax-pre-lttrn 8041  ax-pre-apti 8042  ax-pre-ltadd 8043  ax-pre-mulgt0 8044  ax-pre-mulext 8045  ax-arch 8046  ax-caucvg 8047
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-xor 1396  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-tr 4144  df-id 4341  df-po 4344  df-iso 4345  df-iord 4414  df-on 4416  df-ilim 4417  df-suc 4419  df-iom 4640  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-isom 5281  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-1st 6228  df-2nd 6229  df-recs 6393  df-irdg 6458  df-frec 6479  df-1o 6504  df-2o 6505  df-oadd 6508  df-er 6622  df-en 6830  df-dom 6831  df-fin 6832  df-sup 7088  df-inf 7089  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115  df-sub 8247  df-neg 8248  df-reap 8650  df-ap 8657  df-div 8748  df-inn 9039  df-2 9097  df-3 9098  df-4 9099  df-n0 9298  df-z 9375  df-uz 9651  df-q 9743  df-rp 9778  df-fz 10133  df-fzo 10267  df-fl 10415  df-mod 10470  df-seqfrec 10595  df-exp 10686  df-ihash 10923  df-cj 11186  df-re 11187  df-im 11188  df-rsqrt 11342  df-abs 11343  df-dvds 12132  df-gcd 12308  df-prm 12463  df-gz 12726
This theorem is referenced by:  4sq  12766
  Copyright terms: Public domain W3C validator