ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4sqlem19 Unicode version

Theorem 4sqlem19 12932
Description: Lemma for 4sq 12933. The proof is by strong induction - we show that if all the integers less than  k are in  S, then  k is as well. In this part of the proof we do the induction argument and dispense with all the cases except the odd prime case, which is sent to 4sqlem18 12931. If  k is  0 ,  1 ,  2, we show  k  e.  S directly; otherwise if  k is composite,  k is the product of two numbers less than it (and hence in  S by assumption), so by mul4sq 12917  k  e.  S. (Contributed by Mario Carneiro, 14-Jul-2014.) (Revised by Mario Carneiro, 20-Jun-2015.)
Hypothesis
Ref Expression
4sqlem11.1  |-  S  =  { n  |  E. x  e.  ZZ  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) }
Assertion
Ref Expression
4sqlem19  |-  NN0  =  S
Distinct variable groups:    S, n    w, n, x, y, z
Allowed substitution hints:    S( x, y, z, w)

Proof of Theorem 4sqlem19
Dummy variables  i  j  k  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnn0 9371 . . . 4  |-  ( k  e.  NN0  <->  ( k  e.  NN  \/  k  =  0 ) )
2 eleq1 2292 . . . . . 6  |-  ( j  =  1  ->  (
j  e.  S  <->  1  e.  S ) )
3 eleq1 2292 . . . . . 6  |-  ( j  =  m  ->  (
j  e.  S  <->  m  e.  S ) )
4 eleq1 2292 . . . . . 6  |-  ( j  =  i  ->  (
j  e.  S  <->  i  e.  S ) )
5 eleq1 2292 . . . . . 6  |-  ( j  =  ( m  x.  i )  ->  (
j  e.  S  <->  ( m  x.  i )  e.  S
) )
6 eleq1 2292 . . . . . 6  |-  ( j  =  k  ->  (
j  e.  S  <->  k  e.  S ) )
7 abs1 11583 . . . . . . . . . . 11  |-  ( abs `  1 )  =  1
87oveq1i 6011 . . . . . . . . . 10  |-  ( ( abs `  1 ) ^ 2 )  =  ( 1 ^ 2 )
9 sq1 10855 . . . . . . . . . 10  |-  ( 1 ^ 2 )  =  1
108, 9eqtri 2250 . . . . . . . . 9  |-  ( ( abs `  1 ) ^ 2 )  =  1
11 abs0 11569 . . . . . . . . . . 11  |-  ( abs `  0 )  =  0
1211oveq1i 6011 . . . . . . . . . 10  |-  ( ( abs `  0 ) ^ 2 )  =  ( 0 ^ 2 )
13 sq0 10852 . . . . . . . . . 10  |-  ( 0 ^ 2 )  =  0
1412, 13eqtri 2250 . . . . . . . . 9  |-  ( ( abs `  0 ) ^ 2 )  =  0
1510, 14oveq12i 6013 . . . . . . . 8  |-  ( ( ( abs `  1
) ^ 2 )  +  ( ( abs `  0 ) ^
2 ) )  =  ( 1  +  0 )
16 1p0e1 9226 . . . . . . . 8  |-  ( 1  +  0 )  =  1
1715, 16eqtri 2250 . . . . . . 7  |-  ( ( ( abs `  1
) ^ 2 )  +  ( ( abs `  0 ) ^
2 ) )  =  1
18 1z 9472 . . . . . . . . 9  |-  1  e.  ZZ
19 zgz 12896 . . . . . . . . 9  |-  ( 1  e.  ZZ  ->  1  e.  ZZ[_i]
)
2018, 19ax-mp 5 . . . . . . . 8  |-  1  e.  ZZ[_i]
21 0z 9457 . . . . . . . . 9  |-  0  e.  ZZ
22 zgz 12896 . . . . . . . . 9  |-  ( 0  e.  ZZ  ->  0  e.  ZZ[_i]
)
2321, 22ax-mp 5 . . . . . . . 8  |-  0  e.  ZZ[_i]
24 4sqlem11.1 . . . . . . . . 9  |-  S  =  { n  |  E. x  e.  ZZ  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) }
25244sqlem4a 12914 . . . . . . . 8  |-  ( ( 1  e.  ZZ[_i]  /\  0  e.  ZZ[_i]
)  ->  ( (
( abs `  1
) ^ 2 )  +  ( ( abs `  0 ) ^
2 ) )  e.  S )
2620, 23, 25mp2an 426 . . . . . . 7  |-  ( ( ( abs `  1
) ^ 2 )  +  ( ( abs `  0 ) ^
2 ) )  e.  S
2717, 26eqeltrri 2303 . . . . . 6  |-  1  e.  S
2810, 10oveq12i 6013 . . . . . . . . . 10  |-  ( ( ( abs `  1
) ^ 2 )  +  ( ( abs `  1 ) ^
2 ) )  =  ( 1  +  1 )
29 df-2 9169 . . . . . . . . . 10  |-  2  =  ( 1  +  1 )
3028, 29eqtr4i 2253 . . . . . . . . 9  |-  ( ( ( abs `  1
) ^ 2 )  +  ( ( abs `  1 ) ^
2 ) )  =  2
31244sqlem4a 12914 . . . . . . . . . 10  |-  ( ( 1  e.  ZZ[_i]  /\  1  e.  ZZ[_i]
)  ->  ( (
( abs `  1
) ^ 2 )  +  ( ( abs `  1 ) ^
2 ) )  e.  S )
3220, 20, 31mp2an 426 . . . . . . . . 9  |-  ( ( ( abs `  1
) ^ 2 )  +  ( ( abs `  1 ) ^
2 ) )  e.  S
3330, 32eqeltrri 2303 . . . . . . . 8  |-  2  e.  S
34 eleq1 2292 . . . . . . . . 9  |-  ( j  =  2  ->  (
j  e.  S  <->  2  e.  S ) )
3534adantl 277 . . . . . . . 8  |-  ( ( ( j  e.  Prime  /\ 
A. m  e.  ( 1 ... ( j  -  1 ) ) m  e.  S )  /\  j  =  2 )  ->  ( j  e.  S  <->  2  e.  S
) )
3633, 35mpbiri 168 . . . . . . 7  |-  ( ( ( j  e.  Prime  /\ 
A. m  e.  ( 1 ... ( j  -  1 ) ) m  e.  S )  /\  j  =  2 )  ->  j  e.  S )
37 eldifsn 3795 . . . . . . . . 9  |-  ( j  e.  ( Prime  \  {
2 } )  <->  ( j  e.  Prime  /\  j  =/=  2 ) )
38 oddprm 12782 . . . . . . . . . . 11  |-  ( j  e.  ( Prime  \  {
2 } )  -> 
( ( j  - 
1 )  /  2
)  e.  NN )
3938adantr 276 . . . . . . . . . 10  |-  ( ( j  e.  ( Prime  \  { 2 } )  /\  A. m  e.  ( 1 ... (
j  -  1 ) ) m  e.  S
)  ->  ( (
j  -  1 )  /  2 )  e.  NN )
40 eldifi 3326 . . . . . . . . . . . . . . . 16  |-  ( j  e.  ( Prime  \  {
2 } )  -> 
j  e.  Prime )
4140adantr 276 . . . . . . . . . . . . . . 15  |-  ( ( j  e.  ( Prime  \  { 2 } )  /\  A. m  e.  ( 1 ... (
j  -  1 ) ) m  e.  S
)  ->  j  e.  Prime )
42 prmnn 12632 . . . . . . . . . . . . . . 15  |-  ( j  e.  Prime  ->  j  e.  NN )
43 nncn 9118 . . . . . . . . . . . . . . 15  |-  ( j  e.  NN  ->  j  e.  CC )
4441, 42, 433syl 17 . . . . . . . . . . . . . 14  |-  ( ( j  e.  ( Prime  \  { 2 } )  /\  A. m  e.  ( 1 ... (
j  -  1 ) ) m  e.  S
)  ->  j  e.  CC )
45 ax-1cn 8092 . . . . . . . . . . . . . 14  |-  1  e.  CC
46 subcl 8345 . . . . . . . . . . . . . 14  |-  ( ( j  e.  CC  /\  1  e.  CC )  ->  ( j  -  1 )  e.  CC )
4744, 45, 46sylancl 413 . . . . . . . . . . . . 13  |-  ( ( j  e.  ( Prime  \  { 2 } )  /\  A. m  e.  ( 1 ... (
j  -  1 ) ) m  e.  S
)  ->  ( j  -  1 )  e.  CC )
48 2cnd 9183 . . . . . . . . . . . . 13  |-  ( ( j  e.  ( Prime  \  { 2 } )  /\  A. m  e.  ( 1 ... (
j  -  1 ) ) m  e.  S
)  ->  2  e.  CC )
49 2ap0 9203 . . . . . . . . . . . . . 14  |-  2 #  0
5049a1i 9 . . . . . . . . . . . . 13  |-  ( ( j  e.  ( Prime  \  { 2 } )  /\  A. m  e.  ( 1 ... (
j  -  1 ) ) m  e.  S
)  ->  2 #  0
)
5147, 48, 50divcanap2d 8939 . . . . . . . . . . . 12  |-  ( ( j  e.  ( Prime  \  { 2 } )  /\  A. m  e.  ( 1 ... (
j  -  1 ) ) m  e.  S
)  ->  ( 2  x.  ( ( j  -  1 )  / 
2 ) )  =  ( j  -  1 ) )
5251oveq1d 6016 . . . . . . . . . . 11  |-  ( ( j  e.  ( Prime  \  { 2 } )  /\  A. m  e.  ( 1 ... (
j  -  1 ) ) m  e.  S
)  ->  ( (
2  x.  ( ( j  -  1 )  /  2 ) )  +  1 )  =  ( ( j  - 
1 )  +  1 ) )
53 npcan 8355 . . . . . . . . . . . 12  |-  ( ( j  e.  CC  /\  1  e.  CC )  ->  ( ( j  - 
1 )  +  1 )  =  j )
5444, 45, 53sylancl 413 . . . . . . . . . . 11  |-  ( ( j  e.  ( Prime  \  { 2 } )  /\  A. m  e.  ( 1 ... (
j  -  1 ) ) m  e.  S
)  ->  ( (
j  -  1 )  +  1 )  =  j )
5552, 54eqtr2d 2263 . . . . . . . . . 10  |-  ( ( j  e.  ( Prime  \  { 2 } )  /\  A. m  e.  ( 1 ... (
j  -  1 ) ) m  e.  S
)  ->  j  =  ( ( 2  x.  ( ( j  - 
1 )  /  2
) )  +  1 ) )
5651oveq2d 6017 . . . . . . . . . . . 12  |-  ( ( j  e.  ( Prime  \  { 2 } )  /\  A. m  e.  ( 1 ... (
j  -  1 ) ) m  e.  S
)  ->  ( 0 ... ( 2  x.  ( ( j  - 
1 )  /  2
) ) )  =  ( 0 ... (
j  -  1 ) ) )
57 nnm1nn0 9410 . . . . . . . . . . . . . . 15  |-  ( j  e.  NN  ->  (
j  -  1 )  e.  NN0 )
5841, 42, 573syl 17 . . . . . . . . . . . . . 14  |-  ( ( j  e.  ( Prime  \  { 2 } )  /\  A. m  e.  ( 1 ... (
j  -  1 ) ) m  e.  S
)  ->  ( j  -  1 )  e. 
NN0 )
59 elnn0uz 9760 . . . . . . . . . . . . . 14  |-  ( ( j  -  1 )  e.  NN0  <->  ( j  - 
1 )  e.  (
ZZ>= `  0 ) )
6058, 59sylib 122 . . . . . . . . . . . . 13  |-  ( ( j  e.  ( Prime  \  { 2 } )  /\  A. m  e.  ( 1 ... (
j  -  1 ) ) m  e.  S
)  ->  ( j  -  1 )  e.  ( ZZ>= `  0 )
)
61 eluzfz1 10227 . . . . . . . . . . . . 13  |-  ( ( j  -  1 )  e.  ( ZZ>= `  0
)  ->  0  e.  ( 0 ... (
j  -  1 ) ) )
62 fzsplit 10247 . . . . . . . . . . . . 13  |-  ( 0  e.  ( 0 ... ( j  -  1 ) )  ->  (
0 ... ( j  - 
1 ) )  =  ( ( 0 ... 0 )  u.  (
( 0  +  1 ) ... ( j  -  1 ) ) ) )
6360, 61, 623syl 17 . . . . . . . . . . . 12  |-  ( ( j  e.  ( Prime  \  { 2 } )  /\  A. m  e.  ( 1 ... (
j  -  1 ) ) m  e.  S
)  ->  ( 0 ... ( j  - 
1 ) )  =  ( ( 0 ... 0 )  u.  (
( 0  +  1 ) ... ( j  -  1 ) ) ) )
6456, 63eqtrd 2262 . . . . . . . . . . 11  |-  ( ( j  e.  ( Prime  \  { 2 } )  /\  A. m  e.  ( 1 ... (
j  -  1 ) ) m  e.  S
)  ->  ( 0 ... ( 2  x.  ( ( j  - 
1 )  /  2
) ) )  =  ( ( 0 ... 0 )  u.  (
( 0  +  1 ) ... ( j  -  1 ) ) ) )
65 fz0sn 10317 . . . . . . . . . . . . . 14  |-  ( 0 ... 0 )  =  { 0 }
6614, 14oveq12i 6013 . . . . . . . . . . . . . . . . 17  |-  ( ( ( abs `  0
) ^ 2 )  +  ( ( abs `  0 ) ^
2 ) )  =  ( 0  +  0 )
67 00id 8287 . . . . . . . . . . . . . . . . 17  |-  ( 0  +  0 )  =  0
6866, 67eqtri 2250 . . . . . . . . . . . . . . . 16  |-  ( ( ( abs `  0
) ^ 2 )  +  ( ( abs `  0 ) ^
2 ) )  =  0
69244sqlem4a 12914 . . . . . . . . . . . . . . . . 17  |-  ( ( 0  e.  ZZ[_i]  /\  0  e.  ZZ[_i]
)  ->  ( (
( abs `  0
) ^ 2 )  +  ( ( abs `  0 ) ^
2 ) )  e.  S )
7023, 23, 69mp2an 426 . . . . . . . . . . . . . . . 16  |-  ( ( ( abs `  0
) ^ 2 )  +  ( ( abs `  0 ) ^
2 ) )  e.  S
7168, 70eqeltrri 2303 . . . . . . . . . . . . . . 15  |-  0  e.  S
72 snssi 3812 . . . . . . . . . . . . . . 15  |-  ( 0  e.  S  ->  { 0 }  C_  S )
7371, 72ax-mp 5 . . . . . . . . . . . . . 14  |-  { 0 }  C_  S
7465, 73eqsstri 3256 . . . . . . . . . . . . 13  |-  ( 0 ... 0 )  C_  S
7574a1i 9 . . . . . . . . . . . 12  |-  ( ( j  e.  ( Prime  \  { 2 } )  /\  A. m  e.  ( 1 ... (
j  -  1 ) ) m  e.  S
)  ->  ( 0 ... 0 )  C_  S )
76 0p1e1 9224 . . . . . . . . . . . . . 14  |-  ( 0  +  1 )  =  1
7776oveq1i 6011 . . . . . . . . . . . . 13  |-  ( ( 0  +  1 ) ... ( j  - 
1 ) )  =  ( 1 ... (
j  -  1 ) )
78 simpr 110 . . . . . . . . . . . . . 14  |-  ( ( j  e.  ( Prime  \  { 2 } )  /\  A. m  e.  ( 1 ... (
j  -  1 ) ) m  e.  S
)  ->  A. m  e.  ( 1 ... (
j  -  1 ) ) m  e.  S
)
79 dfss3 3213 . . . . . . . . . . . . . 14  |-  ( ( 1 ... ( j  -  1 ) ) 
C_  S  <->  A. m  e.  ( 1 ... (
j  -  1 ) ) m  e.  S
)
8078, 79sylibr 134 . . . . . . . . . . . . 13  |-  ( ( j  e.  ( Prime  \  { 2 } )  /\  A. m  e.  ( 1 ... (
j  -  1 ) ) m  e.  S
)  ->  ( 1 ... ( j  - 
1 ) )  C_  S )
8177, 80eqsstrid 3270 . . . . . . . . . . . 12  |-  ( ( j  e.  ( Prime  \  { 2 } )  /\  A. m  e.  ( 1 ... (
j  -  1 ) ) m  e.  S
)  ->  ( (
0  +  1 ) ... ( j  - 
1 ) )  C_  S )
8275, 81unssd 3380 . . . . . . . . . . 11  |-  ( ( j  e.  ( Prime  \  { 2 } )  /\  A. m  e.  ( 1 ... (
j  -  1 ) ) m  e.  S
)  ->  ( (
0 ... 0 )  u.  ( ( 0  +  1 ) ... (
j  -  1 ) ) )  C_  S
)
8364, 82eqsstrd 3260 . . . . . . . . . 10  |-  ( ( j  e.  ( Prime  \  { 2 } )  /\  A. m  e.  ( 1 ... (
j  -  1 ) ) m  e.  S
)  ->  ( 0 ... ( 2  x.  ( ( j  - 
1 )  /  2
) ) )  C_  S )
84 oveq1 6008 . . . . . . . . . . . 12  |-  ( k  =  i  ->  (
k  x.  j )  =  ( i  x.  j ) )
8584eleq1d 2298 . . . . . . . . . . 11  |-  ( k  =  i  ->  (
( k  x.  j
)  e.  S  <->  ( i  x.  j )  e.  S
) )
8685cbvrabv 2798 . . . . . . . . . 10  |-  { k  e.  NN  |  ( k  x.  j )  e.  S }  =  { i  e.  NN  |  ( i  x.  j )  e.  S }
87 eqid 2229 . . . . . . . . . 10  |- inf ( { k  e.  NN  | 
( k  x.  j
)  e.  S } ,  RR ,  <  )  = inf ( { k  e.  NN  |  ( k  x.  j )  e.  S } ,  RR ,  <  )
8824, 39, 55, 41, 83, 86, 874sqlem18 12931 . . . . . . . . 9  |-  ( ( j  e.  ( Prime  \  { 2 } )  /\  A. m  e.  ( 1 ... (
j  -  1 ) ) m  e.  S
)  ->  j  e.  S )
8937, 88sylanbr 285 . . . . . . . 8  |-  ( ( ( j  e.  Prime  /\  j  =/=  2 )  /\  A. m  e.  ( 1 ... (
j  -  1 ) ) m  e.  S
)  ->  j  e.  S )
9089an32s 568 . . . . . . 7  |-  ( ( ( j  e.  Prime  /\ 
A. m  e.  ( 1 ... ( j  -  1 ) ) m  e.  S )  /\  j  =/=  2
)  ->  j  e.  S )
91 prmz 12633 . . . . . . . . . 10  |-  ( j  e.  Prime  ->  j  e.  ZZ )
9291adantr 276 . . . . . . . . 9  |-  ( ( j  e.  Prime  /\  A. m  e.  ( 1 ... ( j  - 
1 ) ) m  e.  S )  -> 
j  e.  ZZ )
93 2z 9474 . . . . . . . . 9  |-  2  e.  ZZ
94 zdceq 9522 . . . . . . . . 9  |-  ( ( j  e.  ZZ  /\  2  e.  ZZ )  -> DECID  j  =  2 )
9592, 93, 94sylancl 413 . . . . . . . 8  |-  ( ( j  e.  Prime  /\  A. m  e.  ( 1 ... ( j  - 
1 ) ) m  e.  S )  -> DECID  j  =  2 )
96 dcne 2411 . . . . . . . 8  |-  (DECID  j  =  2  <->  ( j  =  2  \/  j  =/=  2 ) )
9795, 96sylib 122 . . . . . . 7  |-  ( ( j  e.  Prime  /\  A. m  e.  ( 1 ... ( j  - 
1 ) ) m  e.  S )  -> 
( j  =  2  \/  j  =/=  2
) )
9836, 90, 97mpjaodan 803 . . . . . 6  |-  ( ( j  e.  Prime  /\  A. m  e.  ( 1 ... ( j  - 
1 ) ) m  e.  S )  -> 
j  e.  S )
9924mul4sq 12917 . . . . . . 7  |-  ( ( m  e.  S  /\  i  e.  S )  ->  ( m  x.  i
)  e.  S )
10099a1i 9 . . . . . 6  |-  ( ( m  e.  ( ZZ>= ` 
2 )  /\  i  e.  ( ZZ>= `  2 )
)  ->  ( (
m  e.  S  /\  i  e.  S )  ->  ( m  x.  i
)  e.  S ) )
1012, 3, 4, 5, 6, 27, 98, 100prmind2 12642 . . . . 5  |-  ( k  e.  NN  ->  k  e.  S )
102 id 19 . . . . . 6  |-  ( k  =  0  ->  k  =  0 )
103102, 71eqeltrdi 2320 . . . . 5  |-  ( k  =  0  ->  k  e.  S )
104101, 103jaoi 721 . . . 4  |-  ( ( k  e.  NN  \/  k  =  0 )  ->  k  e.  S
)
1051, 104sylbi 121 . . 3  |-  ( k  e.  NN0  ->  k  e.  S )
106105ssriv 3228 . 2  |-  NN0  C_  S
107244sqlem1 12911 . 2  |-  S  C_  NN0
108106, 107eqssi 3240 1  |-  NN0  =  S
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713  DECID wdc 839    = wceq 1395    e. wcel 2200   {cab 2215    =/= wne 2400   A.wral 2508   E.wrex 2509   {crab 2512    \ cdif 3194    u. cun 3195    C_ wss 3197   {csn 3666   class class class wbr 4083   ` cfv 5318  (class class class)co 6001  infcinf 7150   CCcc 7997   RRcr 7998   0cc0 7999   1c1 8000    + caddc 8002    x. cmul 8004    < clt 8181    - cmin 8317   # cap 8728    / cdiv 8819   NNcn 9110   2c2 9161   NN0cn0 9369   ZZcz 9446   ZZ>=cuz 9722   ...cfz 10204   ^cexp 10760   abscabs 11508   Primecprime 12629   ZZ[_i]cgz 12892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117  ax-arch 8118  ax-caucvg 8119
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-xor 1418  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-irdg 6516  df-frec 6537  df-1o 6562  df-2o 6563  df-oadd 6566  df-er 6680  df-en 6888  df-dom 6889  df-fin 6890  df-sup 7151  df-inf 7152  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-n0 9370  df-z 9447  df-uz 9723  df-q 9815  df-rp 9850  df-fz 10205  df-fzo 10339  df-fl 10490  df-mod 10545  df-seqfrec 10670  df-exp 10761  df-ihash 10998  df-cj 11353  df-re 11354  df-im 11355  df-rsqrt 11509  df-abs 11510  df-dvds 12299  df-gcd 12475  df-prm 12630  df-gz 12893
This theorem is referenced by:  4sq  12933
  Copyright terms: Public domain W3C validator