ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4sqlemafi Unicode version

Theorem 4sqlemafi 12430
Description: Lemma for 4sq 12445.  A is finite. (Contributed by Jim Kingdon, 24-May-2025.)
Hypotheses
Ref Expression
4sqlemafi.n  |-  ( ph  ->  N  e.  NN )
4sqlemafi.p  |-  ( ph  ->  P  e.  NN )
4sqlemafi.a  |-  A  =  { u  |  E. m  e.  ( 0 ... N ) u  =  ( ( m ^ 2 )  mod 
P ) }
Assertion
Ref Expression
4sqlemafi  |-  ( ph  ->  A  e.  Fin )
Distinct variable groups:    m, N, u    P, m, u    ph, m, u
Allowed substitution hints:    A( u, m)

Proof of Theorem 4sqlemafi
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 4sqlemafi.a . 2  |-  A  =  { u  |  E. m  e.  ( 0 ... N ) u  =  ( ( m ^ 2 )  mod 
P ) }
2 0zd 9296 . . . 4  |-  ( ph  ->  0  e.  ZZ )
3 4sqlemafi.p . . . . 5  |-  ( ph  ->  P  e.  NN )
43nnzd 9405 . . . 4  |-  ( ph  ->  P  e.  ZZ )
5 fzofig 10465 . . . 4  |-  ( ( 0  e.  ZZ  /\  P  e.  ZZ )  ->  ( 0..^ P )  e.  Fin )
62, 4, 5syl2anc 411 . . 3  |-  ( ph  ->  ( 0..^ P )  e.  Fin )
7 df-rex 2474 . . . . 5  |-  ( E. m  e.  ( 0 ... N ) u  =  ( ( m ^ 2 )  mod 
P )  <->  E. m
( m  e.  ( 0 ... N )  /\  u  =  ( ( m ^ 2 )  mod  P ) ) )
87abbii 2305 . . . 4  |-  { u  |  E. m  e.  ( 0 ... N ) u  =  ( ( m ^ 2 )  mod  P ) }  =  { u  |  E. m ( m  e.  ( 0 ... N )  /\  u  =  ( ( m ^ 2 )  mod 
P ) ) }
9 simprr 531 . . . . . . . 8  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  u  =  ( ( m ^
2 )  mod  P
) ) )  ->  u  =  ( (
m ^ 2 )  mod  P ) )
10 elfzelz 10057 . . . . . . . . . . 11  |-  ( m  e.  ( 0 ... N )  ->  m  e.  ZZ )
1110ad2antrl 490 . . . . . . . . . 10  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  u  =  ( ( m ^
2 )  mod  P
) ) )  ->  m  e.  ZZ )
12 zsqcl 10625 . . . . . . . . . 10  |-  ( m  e.  ZZ  ->  (
m ^ 2 )  e.  ZZ )
1311, 12syl 14 . . . . . . . . 9  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  u  =  ( ( m ^
2 )  mod  P
) ) )  -> 
( m ^ 2 )  e.  ZZ )
143adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  u  =  ( ( m ^
2 )  mod  P
) ) )  ->  P  e.  NN )
15 zmodfzo 10380 . . . . . . . . 9  |-  ( ( ( m ^ 2 )  e.  ZZ  /\  P  e.  NN )  ->  ( ( m ^
2 )  mod  P
)  e.  ( 0..^ P ) )
1613, 14, 15syl2anc 411 . . . . . . . 8  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  u  =  ( ( m ^
2 )  mod  P
) ) )  -> 
( ( m ^
2 )  mod  P
)  e.  ( 0..^ P ) )
179, 16eqeltrd 2266 . . . . . . 7  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  u  =  ( ( m ^
2 )  mod  P
) ) )  ->  u  e.  ( 0..^ P ) )
1817ex 115 . . . . . 6  |-  ( ph  ->  ( ( m  e.  ( 0 ... N
)  /\  u  =  ( ( m ^
2 )  mod  P
) )  ->  u  e.  ( 0..^ P ) ) )
1918exlimdv 1830 . . . . 5  |-  ( ph  ->  ( E. m ( m  e.  ( 0 ... N )  /\  u  =  ( (
m ^ 2 )  mod  P ) )  ->  u  e.  ( 0..^ P ) ) )
2019abssdv 3244 . . . 4  |-  ( ph  ->  { u  |  E. m ( m  e.  ( 0 ... N
)  /\  u  =  ( ( m ^
2 )  mod  P
) ) }  C_  ( 0..^ P ) )
218, 20eqsstrid 3216 . . 3  |-  ( ph  ->  { u  |  E. m  e.  ( 0 ... N ) u  =  ( ( m ^ 2 )  mod 
P ) }  C_  ( 0..^ P ) )
22 0zd 9296 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 0..^ P ) )  ->  0  e.  ZZ )
23 4sqlemafi.n . . . . . . . 8  |-  ( ph  ->  N  e.  NN )
2423nnzd 9405 . . . . . . 7  |-  ( ph  ->  N  e.  ZZ )
2524adantr 276 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 0..^ P ) )  ->  N  e.  ZZ )
26 elfzoelz 10179 . . . . . . . 8  |-  ( x  e.  ( 0..^ P )  ->  x  e.  ZZ )
2726ad2antlr 489 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ( 0..^ P ) )  /\  m  e.  ( 0 ... N
) )  ->  x  e.  ZZ )
2810adantl 277 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( 0..^ P ) )  /\  m  e.  ( 0 ... N
) )  ->  m  e.  ZZ )
2928, 12syl 14 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( 0..^ P ) )  /\  m  e.  ( 0 ... N
) )  ->  (
m ^ 2 )  e.  ZZ )
303ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( 0..^ P ) )  /\  m  e.  ( 0 ... N
) )  ->  P  e.  NN )
3129, 30zmodcld 10378 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( 0..^ P ) )  /\  m  e.  ( 0 ... N
) )  ->  (
( m ^ 2 )  mod  P )  e.  NN0 )
3231nn0zd 9404 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ( 0..^ P ) )  /\  m  e.  ( 0 ... N
) )  ->  (
( m ^ 2 )  mod  P )  e.  ZZ )
33 zdceq 9359 . . . . . . 7  |-  ( ( x  e.  ZZ  /\  ( ( m ^
2 )  mod  P
)  e.  ZZ )  -> DECID 
x  =  ( ( m ^ 2 )  mod  P ) )
3427, 32, 33syl2anc 411 . . . . . 6  |-  ( ( ( ph  /\  x  e.  ( 0..^ P ) )  /\  m  e.  ( 0 ... N
) )  -> DECID  x  =  (
( m ^ 2 )  mod  P ) )
3522, 25, 34exfzdc 10272 . . . . 5  |-  ( (
ph  /\  x  e.  ( 0..^ P ) )  -> DECID  E. m  e.  (
0 ... N ) x  =  ( ( m ^ 2 )  mod 
P ) )
36 vex 2755 . . . . . . 7  |-  x  e. 
_V
37 eqeq1 2196 . . . . . . . 8  |-  ( u  =  x  ->  (
u  =  ( ( m ^ 2 )  mod  P )  <->  x  =  ( ( m ^
2 )  mod  P
) ) )
3837rexbidv 2491 . . . . . . 7  |-  ( u  =  x  ->  ( E. m  e.  (
0 ... N ) u  =  ( ( m ^ 2 )  mod 
P )  <->  E. m  e.  ( 0 ... N
) x  =  ( ( m ^ 2 )  mod  P ) ) )
3936, 38elab 2896 . . . . . 6  |-  ( x  e.  { u  |  E. m  e.  ( 0 ... N ) u  =  ( ( m ^ 2 )  mod  P ) }  <->  E. m  e.  (
0 ... N ) x  =  ( ( m ^ 2 )  mod 
P ) )
4039dcbii 841 . . . . 5  |-  (DECID  x  e. 
{ u  |  E. m  e.  ( 0 ... N ) u  =  ( ( m ^ 2 )  mod 
P ) }  <-> DECID  E. m  e.  ( 0 ... N ) x  =  ( ( m ^ 2 )  mod  P ) )
4135, 40sylibr 134 . . . 4  |-  ( (
ph  /\  x  e.  ( 0..^ P ) )  -> DECID 
x  e.  { u  |  E. m  e.  ( 0 ... N ) u  =  ( ( m ^ 2 )  mod  P ) } )
4241ralrimiva 2563 . . 3  |-  ( ph  ->  A. x  e.  ( 0..^ P )DECID  x  e. 
{ u  |  E. m  e.  ( 0 ... N ) u  =  ( ( m ^ 2 )  mod 
P ) } )
43 ssfidc 6964 . . 3  |-  ( ( ( 0..^ P )  e.  Fin  /\  {
u  |  E. m  e.  ( 0 ... N
) u  =  ( ( m ^ 2 )  mod  P ) }  C_  ( 0..^ P )  /\  A. x  e.  ( 0..^ P )DECID  x  e.  { u  |  E. m  e.  ( 0 ... N ) u  =  ( ( m ^ 2 )  mod  P ) } )  ->  { u  |  E. m  e.  ( 0 ... N ) u  =  ( ( m ^ 2 )  mod  P ) }  e.  Fin )
446, 21, 42, 43syl3anc 1249 . 2  |-  ( ph  ->  { u  |  E. m  e.  ( 0 ... N ) u  =  ( ( m ^ 2 )  mod 
P ) }  e.  Fin )
451, 44eqeltrid 2276 1  |-  ( ph  ->  A  e.  Fin )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104  DECID wdc 835    = wceq 1364   E.wex 1503    e. wcel 2160   {cab 2175   A.wral 2468   E.wrex 2469    C_ wss 3144  (class class class)co 5897   Fincfn 6767   0cc0 7842   NNcn 8950   2c2 9001   ZZcz 9284   ...cfz 10040  ..^cfzo 10174    mod cmo 10355   ^cexp 10553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605  ax-cnex 7933  ax-resscn 7934  ax-1cn 7935  ax-1re 7936  ax-icn 7937  ax-addcl 7938  ax-addrcl 7939  ax-mulcl 7940  ax-mulrcl 7941  ax-addcom 7942  ax-mulcom 7943  ax-addass 7944  ax-mulass 7945  ax-distr 7946  ax-i2m1 7947  ax-0lt1 7948  ax-1rid 7949  ax-0id 7950  ax-rnegex 7951  ax-precex 7952  ax-cnre 7953  ax-pre-ltirr 7954  ax-pre-ltwlin 7955  ax-pre-lttrn 7956  ax-pre-apti 7957  ax-pre-ltadd 7958  ax-pre-mulgt0 7959  ax-pre-mulext 7960  ax-arch 7961
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-po 4314  df-iso 4315  df-iord 4384  df-on 4386  df-ilim 4387  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-riota 5852  df-ov 5900  df-oprab 5901  df-mpo 5902  df-1st 6166  df-2nd 6167  df-recs 6331  df-frec 6417  df-1o 6442  df-er 6560  df-en 6768  df-fin 6770  df-pnf 8025  df-mnf 8026  df-xr 8027  df-ltxr 8028  df-le 8029  df-sub 8161  df-neg 8162  df-reap 8563  df-ap 8570  df-div 8661  df-inn 8951  df-2 9009  df-n0 9208  df-z 9285  df-uz 9560  df-q 9652  df-rp 9686  df-fz 10041  df-fzo 10175  df-fl 10303  df-mod 10356  df-seqfrec 10479  df-exp 10554
This theorem is referenced by:  4sqlemffi  12431  4sqleminfi  12432  4sqlem11  12436
  Copyright terms: Public domain W3C validator