ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4sqlemafi Unicode version

Theorem 4sqlemafi 12918
Description: Lemma for 4sq 12933.  A is finite. (Contributed by Jim Kingdon, 24-May-2025.)
Hypotheses
Ref Expression
4sqlemafi.n  |-  ( ph  ->  N  e.  NN )
4sqlemafi.p  |-  ( ph  ->  P  e.  NN )
4sqlemafi.a  |-  A  =  { u  |  E. m  e.  ( 0 ... N ) u  =  ( ( m ^ 2 )  mod 
P ) }
Assertion
Ref Expression
4sqlemafi  |-  ( ph  ->  A  e.  Fin )
Distinct variable groups:    m, N, u    P, m, u    ph, m, u
Allowed substitution hints:    A( u, m)

Proof of Theorem 4sqlemafi
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 4sqlemafi.a . 2  |-  A  =  { u  |  E. m  e.  ( 0 ... N ) u  =  ( ( m ^ 2 )  mod 
P ) }
2 0zd 9458 . . . 4  |-  ( ph  ->  0  e.  ZZ )
3 4sqlemafi.p . . . . 5  |-  ( ph  ->  P  e.  NN )
43nnzd 9568 . . . 4  |-  ( ph  ->  P  e.  ZZ )
5 fzofig 10654 . . . 4  |-  ( ( 0  e.  ZZ  /\  P  e.  ZZ )  ->  ( 0..^ P )  e.  Fin )
62, 4, 5syl2anc 411 . . 3  |-  ( ph  ->  ( 0..^ P )  e.  Fin )
7 df-rex 2514 . . . . 5  |-  ( E. m  e.  ( 0 ... N ) u  =  ( ( m ^ 2 )  mod 
P )  <->  E. m
( m  e.  ( 0 ... N )  /\  u  =  ( ( m ^ 2 )  mod  P ) ) )
87abbii 2345 . . . 4  |-  { u  |  E. m  e.  ( 0 ... N ) u  =  ( ( m ^ 2 )  mod  P ) }  =  { u  |  E. m ( m  e.  ( 0 ... N )  /\  u  =  ( ( m ^ 2 )  mod 
P ) ) }
9 simprr 531 . . . . . . . 8  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  u  =  ( ( m ^
2 )  mod  P
) ) )  ->  u  =  ( (
m ^ 2 )  mod  P ) )
10 elfzelz 10221 . . . . . . . . . . 11  |-  ( m  e.  ( 0 ... N )  ->  m  e.  ZZ )
1110ad2antrl 490 . . . . . . . . . 10  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  u  =  ( ( m ^
2 )  mod  P
) ) )  ->  m  e.  ZZ )
12 zsqcl 10832 . . . . . . . . . 10  |-  ( m  e.  ZZ  ->  (
m ^ 2 )  e.  ZZ )
1311, 12syl 14 . . . . . . . . 9  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  u  =  ( ( m ^
2 )  mod  P
) ) )  -> 
( m ^ 2 )  e.  ZZ )
143adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  u  =  ( ( m ^
2 )  mod  P
) ) )  ->  P  e.  NN )
15 zmodfzo 10569 . . . . . . . . 9  |-  ( ( ( m ^ 2 )  e.  ZZ  /\  P  e.  NN )  ->  ( ( m ^
2 )  mod  P
)  e.  ( 0..^ P ) )
1613, 14, 15syl2anc 411 . . . . . . . 8  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  u  =  ( ( m ^
2 )  mod  P
) ) )  -> 
( ( m ^
2 )  mod  P
)  e.  ( 0..^ P ) )
179, 16eqeltrd 2306 . . . . . . 7  |-  ( (
ph  /\  ( m  e.  ( 0 ... N
)  /\  u  =  ( ( m ^
2 )  mod  P
) ) )  ->  u  e.  ( 0..^ P ) )
1817ex 115 . . . . . 6  |-  ( ph  ->  ( ( m  e.  ( 0 ... N
)  /\  u  =  ( ( m ^
2 )  mod  P
) )  ->  u  e.  ( 0..^ P ) ) )
1918exlimdv 1865 . . . . 5  |-  ( ph  ->  ( E. m ( m  e.  ( 0 ... N )  /\  u  =  ( (
m ^ 2 )  mod  P ) )  ->  u  e.  ( 0..^ P ) ) )
2019abssdv 3298 . . . 4  |-  ( ph  ->  { u  |  E. m ( m  e.  ( 0 ... N
)  /\  u  =  ( ( m ^
2 )  mod  P
) ) }  C_  ( 0..^ P ) )
218, 20eqsstrid 3270 . . 3  |-  ( ph  ->  { u  |  E. m  e.  ( 0 ... N ) u  =  ( ( m ^ 2 )  mod 
P ) }  C_  ( 0..^ P ) )
22 0zd 9458 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 0..^ P ) )  ->  0  e.  ZZ )
23 4sqlemafi.n . . . . . . . 8  |-  ( ph  ->  N  e.  NN )
2423nnzd 9568 . . . . . . 7  |-  ( ph  ->  N  e.  ZZ )
2524adantr 276 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 0..^ P ) )  ->  N  e.  ZZ )
26 elfzoelz 10343 . . . . . . . 8  |-  ( x  e.  ( 0..^ P )  ->  x  e.  ZZ )
2726ad2antlr 489 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ( 0..^ P ) )  /\  m  e.  ( 0 ... N
) )  ->  x  e.  ZZ )
2810adantl 277 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( 0..^ P ) )  /\  m  e.  ( 0 ... N
) )  ->  m  e.  ZZ )
2928, 12syl 14 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( 0..^ P ) )  /\  m  e.  ( 0 ... N
) )  ->  (
m ^ 2 )  e.  ZZ )
303ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( 0..^ P ) )  /\  m  e.  ( 0 ... N
) )  ->  P  e.  NN )
3129, 30zmodcld 10567 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( 0..^ P ) )  /\  m  e.  ( 0 ... N
) )  ->  (
( m ^ 2 )  mod  P )  e.  NN0 )
3231nn0zd 9567 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ( 0..^ P ) )  /\  m  e.  ( 0 ... N
) )  ->  (
( m ^ 2 )  mod  P )  e.  ZZ )
33 zdceq 9522 . . . . . . 7  |-  ( ( x  e.  ZZ  /\  ( ( m ^
2 )  mod  P
)  e.  ZZ )  -> DECID 
x  =  ( ( m ^ 2 )  mod  P ) )
3427, 32, 33syl2anc 411 . . . . . 6  |-  ( ( ( ph  /\  x  e.  ( 0..^ P ) )  /\  m  e.  ( 0 ... N
) )  -> DECID  x  =  (
( m ^ 2 )  mod  P ) )
3522, 25, 34exfzdc 10446 . . . . 5  |-  ( (
ph  /\  x  e.  ( 0..^ P ) )  -> DECID  E. m  e.  (
0 ... N ) x  =  ( ( m ^ 2 )  mod 
P ) )
36 vex 2802 . . . . . . 7  |-  x  e. 
_V
37 eqeq1 2236 . . . . . . . 8  |-  ( u  =  x  ->  (
u  =  ( ( m ^ 2 )  mod  P )  <->  x  =  ( ( m ^
2 )  mod  P
) ) )
3837rexbidv 2531 . . . . . . 7  |-  ( u  =  x  ->  ( E. m  e.  (
0 ... N ) u  =  ( ( m ^ 2 )  mod 
P )  <->  E. m  e.  ( 0 ... N
) x  =  ( ( m ^ 2 )  mod  P ) ) )
3936, 38elab 2947 . . . . . 6  |-  ( x  e.  { u  |  E. m  e.  ( 0 ... N ) u  =  ( ( m ^ 2 )  mod  P ) }  <->  E. m  e.  (
0 ... N ) x  =  ( ( m ^ 2 )  mod 
P ) )
4039dcbii 845 . . . . 5  |-  (DECID  x  e. 
{ u  |  E. m  e.  ( 0 ... N ) u  =  ( ( m ^ 2 )  mod 
P ) }  <-> DECID  E. m  e.  ( 0 ... N ) x  =  ( ( m ^ 2 )  mod  P ) )
4135, 40sylibr 134 . . . 4  |-  ( (
ph  /\  x  e.  ( 0..^ P ) )  -> DECID 
x  e.  { u  |  E. m  e.  ( 0 ... N ) u  =  ( ( m ^ 2 )  mod  P ) } )
4241ralrimiva 2603 . . 3  |-  ( ph  ->  A. x  e.  ( 0..^ P )DECID  x  e. 
{ u  |  E. m  e.  ( 0 ... N ) u  =  ( ( m ^ 2 )  mod 
P ) } )
43 ssfidc 7099 . . 3  |-  ( ( ( 0..^ P )  e.  Fin  /\  {
u  |  E. m  e.  ( 0 ... N
) u  =  ( ( m ^ 2 )  mod  P ) }  C_  ( 0..^ P )  /\  A. x  e.  ( 0..^ P )DECID  x  e.  { u  |  E. m  e.  ( 0 ... N ) u  =  ( ( m ^ 2 )  mod  P ) } )  ->  { u  |  E. m  e.  ( 0 ... N ) u  =  ( ( m ^ 2 )  mod  P ) }  e.  Fin )
446, 21, 42, 43syl3anc 1271 . 2  |-  ( ph  ->  { u  |  E. m  e.  ( 0 ... N ) u  =  ( ( m ^ 2 )  mod 
P ) }  e.  Fin )
451, 44eqeltrid 2316 1  |-  ( ph  ->  A  e.  Fin )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104  DECID wdc 839    = wceq 1395   E.wex 1538    e. wcel 2200   {cab 2215   A.wral 2508   E.wrex 2509    C_ wss 3197  (class class class)co 6001   Fincfn 6887   0cc0 7999   NNcn 9110   2c2 9161   ZZcz 9446   ...cfz 10204  ..^cfzo 10338    mod cmo 10544   ^cexp 10760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117  ax-arch 8118
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-frec 6537  df-1o 6562  df-er 6680  df-en 6888  df-fin 6890  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-2 9169  df-n0 9370  df-z 9447  df-uz 9723  df-q 9815  df-rp 9850  df-fz 10205  df-fzo 10339  df-fl 10490  df-mod 10545  df-seqfrec 10670  df-exp 10761
This theorem is referenced by:  4sqlemffi  12919  4sqleminfi  12920  4sqlem11  12924
  Copyright terms: Public domain W3C validator