| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prdsinvlem | Unicode version | ||
| Description: Characterization of inverses in a structure product. (Contributed by Mario Carneiro, 10-Jan-2015.) |
| Ref | Expression |
|---|---|
| prdsinvlem.y |
|
| prdsinvlem.b |
|
| prdsinvlem.p |
|
| prdsinvlem.s |
|
| prdsinvlem.i |
|
| prdsinvlem.r |
|
| prdsinvlem.f |
|
| prdsinvlem.z |
|
| prdsinvlem.n |
|
| Ref | Expression |
|---|---|
| prdsinvlem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prdsinvlem.n |
. . 3
| |
| 2 | eqid 2229 |
. . . . . 6
| |
| 3 | eqid 2229 |
. . . . . 6
| |
| 4 | prdsinvlem.r |
. . . . . . 7
| |
| 5 | 4 | ffvelcdmda 5763 |
. . . . . 6
|
| 6 | prdsinvlem.y |
. . . . . . 7
| |
| 7 | prdsinvlem.b |
. . . . . . 7
| |
| 8 | prdsinvlem.s |
. . . . . . . 8
| |
| 9 | 8 | adantr 276 |
. . . . . . 7
|
| 10 | prdsinvlem.i |
. . . . . . . 8
| |
| 11 | 10 | adantr 276 |
. . . . . . 7
|
| 12 | 4 | ffnd 5470 |
. . . . . . . 8
|
| 13 | 12 | adantr 276 |
. . . . . . 7
|
| 14 | prdsinvlem.f |
. . . . . . . 8
| |
| 15 | 14 | adantr 276 |
. . . . . . 7
|
| 16 | simpr 110 |
. . . . . . 7
| |
| 17 | 6, 7, 9, 11, 13, 15, 16 | prdsbasprj 13301 |
. . . . . 6
|
| 18 | 2, 3, 5, 17 | grpinvcld 13568 |
. . . . 5
|
| 19 | 18 | ralrimiva 2603 |
. . . 4
|
| 20 | 6, 7, 8, 10, 12 | prdsbasmpt 13299 |
. . . 4
|
| 21 | 19, 20 | mpbird 167 |
. . 3
|
| 22 | 1, 21 | eqeltrid 2316 |
. 2
|
| 23 | eqid 2229 |
. . . . . 6
| |
| 24 | eqid 2229 |
. . . . . 6
| |
| 25 | eqid 2229 |
. . . . . 6
| |
| 26 | eqid 2229 |
. . . . . 6
| |
| 27 | 4 | ffvelcdmda 5763 |
. . . . . 6
|
| 28 | 8 | adantr 276 |
. . . . . . 7
|
| 29 | 10 | adantr 276 |
. . . . . . 7
|
| 30 | 12 | adantr 276 |
. . . . . . 7
|
| 31 | 14 | adantr 276 |
. . . . . . 7
|
| 32 | simpr 110 |
. . . . . . 7
| |
| 33 | 6, 7, 28, 29, 30, 31, 32 | prdsbasprj 13301 |
. . . . . 6
|
| 34 | 23, 24, 25, 26, 27, 33 | grplinvd 13574 |
. . . . 5
|
| 35 | 2fveq3 5628 |
. . . . . . . 8
| |
| 36 | fveq2 5623 |
. . . . . . . 8
| |
| 37 | 35, 36 | fveq12d 5630 |
. . . . . . 7
|
| 38 | 23, 26, 27, 33 | grpinvcld 13568 |
. . . . . . 7
|
| 39 | 1, 37, 32, 38 | fvmptd3 5721 |
. . . . . 6
|
| 40 | 39 | oveq1d 6009 |
. . . . 5
|
| 41 | prdsinvlem.z |
. . . . . . 7
| |
| 42 | 41 | fveq1i 5624 |
. . . . . 6
|
| 43 | fvco2 5696 |
. . . . . . 7
| |
| 44 | 12, 43 | sylan 283 |
. . . . . 6
|
| 45 | 42, 44 | eqtrid 2274 |
. . . . 5
|
| 46 | 34, 40, 45 | 3eqtr4d 2272 |
. . . 4
|
| 47 | 46 | mpteq2dva 4173 |
. . 3
|
| 48 | prdsinvlem.p |
. . . 4
| |
| 49 | 6, 7, 8, 10, 12, 22, 14, 48 | prdsplusgval 13302 |
. . 3
|
| 50 | fn0g 13394 |
. . . . . 6
| |
| 51 | ssv 3246 |
. . . . . . 7
| |
| 52 | 51 | a1i 9 |
. . . . . 6
|
| 53 | fnco 5427 |
. . . . . 6
| |
| 54 | 50, 12, 52, 53 | mp3an2i 1376 |
. . . . 5
|
| 55 | 41 | fneq1i 5411 |
. . . . 5
|
| 56 | 54, 55 | sylibr 134 |
. . . 4
|
| 57 | dffn5im 5672 |
. . . 4
| |
| 58 | 56, 57 | syl 14 |
. . 3
|
| 59 | 47, 49, 58 | 3eqtr4d 2272 |
. 2
|
| 60 | 22, 59 | jca 306 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-addcom 8087 ax-mulcom 8088 ax-addass 8089 ax-mulass 8090 ax-distr 8091 ax-i2m1 8092 ax-0lt1 8093 ax-1rid 8094 ax-0id 8095 ax-rnegex 8096 ax-cnre 8098 ax-pre-ltirr 8099 ax-pre-ltwlin 8100 ax-pre-lttrn 8101 ax-pre-apti 8102 ax-pre-ltadd 8103 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-tp 3674 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-1st 6276 df-2nd 6277 df-map 6787 df-ixp 6836 df-sup 7139 df-pnf 8171 df-mnf 8172 df-xr 8173 df-ltxr 8174 df-le 8175 df-sub 8307 df-neg 8308 df-inn 9099 df-2 9157 df-3 9158 df-4 9159 df-5 9160 df-6 9161 df-7 9162 df-8 9163 df-9 9164 df-n0 9358 df-z 9435 df-dec 9567 df-uz 9711 df-fz 10193 df-struct 13020 df-ndx 13021 df-slot 13022 df-base 13024 df-plusg 13109 df-mulr 13110 df-sca 13112 df-vsca 13113 df-ip 13114 df-tset 13115 df-ple 13116 df-ds 13118 df-hom 13120 df-cco 13121 df-rest 13260 df-topn 13261 df-0g 13277 df-topgen 13279 df-pt 13280 df-prds 13286 df-mgm 13375 df-sgrp 13421 df-mnd 13436 df-grp 13522 df-minusg 13523 |
| This theorem is referenced by: prdsgrpd 13628 prdsinvgd 13629 |
| Copyright terms: Public domain | W3C validator |