ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prdsinvlem Unicode version

Theorem prdsinvlem 13484
Description: Characterization of inverses in a structure product. (Contributed by Mario Carneiro, 10-Jan-2015.)
Hypotheses
Ref Expression
prdsinvlem.y  |-  Y  =  ( S X_s R )
prdsinvlem.b  |-  B  =  ( Base `  Y
)
prdsinvlem.p  |-  .+  =  ( +g  `  Y )
prdsinvlem.s  |-  ( ph  ->  S  e.  V )
prdsinvlem.i  |-  ( ph  ->  I  e.  W )
prdsinvlem.r  |-  ( ph  ->  R : I --> Grp )
prdsinvlem.f  |-  ( ph  ->  F  e.  B )
prdsinvlem.z  |-  .0.  =  ( 0g  o.  R
)
prdsinvlem.n  |-  N  =  ( y  e.  I  |->  ( ( invg `  ( R `  y
) ) `  ( F `  y )
) )
Assertion
Ref Expression
prdsinvlem  |-  ( ph  ->  ( N  e.  B  /\  ( N  .+  F
)  =  .0.  )
)
Distinct variable groups:    y, B    y, F    y, I    ph, y    y, R    y, S    y, V    y, W    y, Y
Allowed substitution hints:    .+ ( y)    N( y)    .0. ( y)

Proof of Theorem prdsinvlem
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 prdsinvlem.n . . 3  |-  N  =  ( y  e.  I  |->  ( ( invg `  ( R `  y
) ) `  ( F `  y )
) )
2 eqid 2206 . . . . . 6  |-  ( Base `  ( R `  y
) )  =  (
Base `  ( R `  y ) )
3 eqid 2206 . . . . . 6  |-  ( invg `  ( R `
 y ) )  =  ( invg `  ( R `  y
) )
4 prdsinvlem.r . . . . . . 7  |-  ( ph  ->  R : I --> Grp )
54ffvelcdmda 5722 . . . . . 6  |-  ( (
ph  /\  y  e.  I )  ->  ( R `  y )  e.  Grp )
6 prdsinvlem.y . . . . . . 7  |-  Y  =  ( S X_s R )
7 prdsinvlem.b . . . . . . 7  |-  B  =  ( Base `  Y
)
8 prdsinvlem.s . . . . . . . 8  |-  ( ph  ->  S  e.  V )
98adantr 276 . . . . . . 7  |-  ( (
ph  /\  y  e.  I )  ->  S  e.  V )
10 prdsinvlem.i . . . . . . . 8  |-  ( ph  ->  I  e.  W )
1110adantr 276 . . . . . . 7  |-  ( (
ph  /\  y  e.  I )  ->  I  e.  W )
124ffnd 5432 . . . . . . . 8  |-  ( ph  ->  R  Fn  I )
1312adantr 276 . . . . . . 7  |-  ( (
ph  /\  y  e.  I )  ->  R  Fn  I )
14 prdsinvlem.f . . . . . . . 8  |-  ( ph  ->  F  e.  B )
1514adantr 276 . . . . . . 7  |-  ( (
ph  /\  y  e.  I )  ->  F  e.  B )
16 simpr 110 . . . . . . 7  |-  ( (
ph  /\  y  e.  I )  ->  y  e.  I )
176, 7, 9, 11, 13, 15, 16prdsbasprj 13158 . . . . . 6  |-  ( (
ph  /\  y  e.  I )  ->  ( F `  y )  e.  ( Base `  ( R `  y )
) )
182, 3, 5, 17grpinvcld 13425 . . . . 5  |-  ( (
ph  /\  y  e.  I )  ->  (
( invg `  ( R `  y ) ) `  ( F `
 y ) )  e.  ( Base `  ( R `  y )
) )
1918ralrimiva 2580 . . . 4  |-  ( ph  ->  A. y  e.  I 
( ( invg `  ( R `  y
) ) `  ( F `  y )
)  e.  ( Base `  ( R `  y
) ) )
206, 7, 8, 10, 12prdsbasmpt 13156 . . . 4  |-  ( ph  ->  ( ( y  e.  I  |->  ( ( invg `  ( R `
 y ) ) `
 ( F `  y ) ) )  e.  B  <->  A. y  e.  I  ( ( invg `  ( R `
 y ) ) `
 ( F `  y ) )  e.  ( Base `  ( R `  y )
) ) )
2119, 20mpbird 167 . . 3  |-  ( ph  ->  ( y  e.  I  |->  ( ( invg `  ( R `  y
) ) `  ( F `  y )
) )  e.  B
)
221, 21eqeltrid 2293 . 2  |-  ( ph  ->  N  e.  B )
23 eqid 2206 . . . . . 6  |-  ( Base `  ( R `  x
) )  =  (
Base `  ( R `  x ) )
24 eqid 2206 . . . . . 6  |-  ( +g  `  ( R `  x
) )  =  ( +g  `  ( R `
 x ) )
25 eqid 2206 . . . . . 6  |-  ( 0g
`  ( R `  x ) )  =  ( 0g `  ( R `  x )
)
26 eqid 2206 . . . . . 6  |-  ( invg `  ( R `
 x ) )  =  ( invg `  ( R `  x
) )
274ffvelcdmda 5722 . . . . . 6  |-  ( (
ph  /\  x  e.  I )  ->  ( R `  x )  e.  Grp )
288adantr 276 . . . . . . 7  |-  ( (
ph  /\  x  e.  I )  ->  S  e.  V )
2910adantr 276 . . . . . . 7  |-  ( (
ph  /\  x  e.  I )  ->  I  e.  W )
3012adantr 276 . . . . . . 7  |-  ( (
ph  /\  x  e.  I )  ->  R  Fn  I )
3114adantr 276 . . . . . . 7  |-  ( (
ph  /\  x  e.  I )  ->  F  e.  B )
32 simpr 110 . . . . . . 7  |-  ( (
ph  /\  x  e.  I )  ->  x  e.  I )
336, 7, 28, 29, 30, 31, 32prdsbasprj 13158 . . . . . 6  |-  ( (
ph  /\  x  e.  I )  ->  ( F `  x )  e.  ( Base `  ( R `  x )
) )
3423, 24, 25, 26, 27, 33grplinvd 13431 . . . . 5  |-  ( (
ph  /\  x  e.  I )  ->  (
( ( invg `  ( R `  x
) ) `  ( F `  x )
) ( +g  `  ( R `  x )
) ( F `  x ) )  =  ( 0g `  ( R `  x )
) )
35 2fveq3 5588 . . . . . . . 8  |-  ( y  =  x  ->  ( invg `  ( R `
 y ) )  =  ( invg `  ( R `  x
) ) )
36 fveq2 5583 . . . . . . . 8  |-  ( y  =  x  ->  ( F `  y )  =  ( F `  x ) )
3735, 36fveq12d 5590 . . . . . . 7  |-  ( y  =  x  ->  (
( invg `  ( R `  y ) ) `  ( F `
 y ) )  =  ( ( invg `  ( R `
 x ) ) `
 ( F `  x ) ) )
3823, 26, 27, 33grpinvcld 13425 . . . . . . 7  |-  ( (
ph  /\  x  e.  I )  ->  (
( invg `  ( R `  x ) ) `  ( F `
 x ) )  e.  ( Base `  ( R `  x )
) )
391, 37, 32, 38fvmptd3 5680 . . . . . 6  |-  ( (
ph  /\  x  e.  I )  ->  ( N `  x )  =  ( ( invg `  ( R `
 x ) ) `
 ( F `  x ) ) )
4039oveq1d 5966 . . . . 5  |-  ( (
ph  /\  x  e.  I )  ->  (
( N `  x
) ( +g  `  ( R `  x )
) ( F `  x ) )  =  ( ( ( invg `  ( R `
 x ) ) `
 ( F `  x ) ) ( +g  `  ( R `
 x ) ) ( F `  x
) ) )
41 prdsinvlem.z . . . . . . 7  |-  .0.  =  ( 0g  o.  R
)
4241fveq1i 5584 . . . . . 6  |-  (  .0.  `  x )  =  ( ( 0g  o.  R
) `  x )
43 fvco2 5655 . . . . . . 7  |-  ( ( R  Fn  I  /\  x  e.  I )  ->  ( ( 0g  o.  R ) `  x
)  =  ( 0g
`  ( R `  x ) ) )
4412, 43sylan 283 . . . . . 6  |-  ( (
ph  /\  x  e.  I )  ->  (
( 0g  o.  R
) `  x )  =  ( 0g `  ( R `  x ) ) )
4542, 44eqtrid 2251 . . . . 5  |-  ( (
ph  /\  x  e.  I )  ->  (  .0.  `  x )  =  ( 0g `  ( R `  x )
) )
4634, 40, 453eqtr4d 2249 . . . 4  |-  ( (
ph  /\  x  e.  I )  ->  (
( N `  x
) ( +g  `  ( R `  x )
) ( F `  x ) )  =  (  .0.  `  x
) )
4746mpteq2dva 4138 . . 3  |-  ( ph  ->  ( x  e.  I  |->  ( ( N `  x ) ( +g  `  ( R `  x
) ) ( F `
 x ) ) )  =  ( x  e.  I  |->  (  .0.  `  x ) ) )
48 prdsinvlem.p . . . 4  |-  .+  =  ( +g  `  Y )
496, 7, 8, 10, 12, 22, 14, 48prdsplusgval 13159 . . 3  |-  ( ph  ->  ( N  .+  F
)  =  ( x  e.  I  |->  ( ( N `  x ) ( +g  `  ( R `  x )
) ( F `  x ) ) ) )
50 fn0g 13251 . . . . . 6  |-  0g  Fn  _V
51 ssv 3216 . . . . . . 7  |-  ran  R  C_ 
_V
5251a1i 9 . . . . . 6  |-  ( ph  ->  ran  R  C_  _V )
53 fnco 5389 . . . . . 6  |-  ( ( 0g  Fn  _V  /\  R  Fn  I  /\  ran  R  C_  _V )  ->  ( 0g  o.  R
)  Fn  I )
5450, 12, 52, 53mp3an2i 1355 . . . . 5  |-  ( ph  ->  ( 0g  o.  R
)  Fn  I )
5541fneq1i 5373 . . . . 5  |-  (  .0. 
Fn  I  <->  ( 0g  o.  R )  Fn  I
)
5654, 55sylibr 134 . . . 4  |-  ( ph  ->  .0.  Fn  I )
57 dffn5im 5631 . . . 4  |-  (  .0. 
Fn  I  ->  .0.  =  ( x  e.  I  |->  (  .0.  `  x ) ) )
5856, 57syl 14 . . 3  |-  ( ph  ->  .0.  =  ( x  e.  I  |->  (  .0.  `  x ) ) )
5947, 49, 583eqtr4d 2249 . 2  |-  ( ph  ->  ( N  .+  F
)  =  .0.  )
6022, 59jca 306 1  |-  ( ph  ->  ( N  e.  B  /\  ( N  .+  F
)  =  .0.  )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2177   A.wral 2485   _Vcvv 2773    C_ wss 3167    |-> cmpt 4109   ran crn 4680    o. ccom 4683    Fn wfn 5271   -->wf 5272   ` cfv 5276  (class class class)co 5951   Basecbs 12876   +g cplusg 12953   0gc0g 13132   X_scprds 13141   Grpcgrp 13376   invgcminusg 13377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-addcom 8032  ax-mulcom 8033  ax-addass 8034  ax-mulass 8035  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-1rid 8039  ax-0id 8040  ax-rnegex 8041  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-apti 8047  ax-pre-ltadd 8048
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-pw 3619  df-sn 3640  df-pr 3641  df-tp 3642  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-map 6744  df-ixp 6793  df-sup 7093  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-inn 9044  df-2 9102  df-3 9103  df-4 9104  df-5 9105  df-6 9106  df-7 9107  df-8 9108  df-9 9109  df-n0 9303  df-z 9380  df-dec 9512  df-uz 9656  df-fz 10138  df-struct 12878  df-ndx 12879  df-slot 12880  df-base 12882  df-plusg 12966  df-mulr 12967  df-sca 12969  df-vsca 12970  df-ip 12971  df-tset 12972  df-ple 12973  df-ds 12975  df-hom 12977  df-cco 12978  df-rest 13117  df-topn 13118  df-0g 13134  df-topgen 13136  df-pt 13137  df-prds 13143  df-mgm 13232  df-sgrp 13278  df-mnd 13293  df-grp 13379  df-minusg 13380
This theorem is referenced by:  prdsgrpd  13485  prdsinvgd  13486
  Copyright terms: Public domain W3C validator