ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prdsinvlem Unicode version

Theorem prdsinvlem 13312
Description: Characterization of inverses in a structure product. (Contributed by Mario Carneiro, 10-Jan-2015.)
Hypotheses
Ref Expression
prdsinvlem.y  |-  Y  =  ( S X_s R )
prdsinvlem.b  |-  B  =  ( Base `  Y
)
prdsinvlem.p  |-  .+  =  ( +g  `  Y )
prdsinvlem.s  |-  ( ph  ->  S  e.  V )
prdsinvlem.i  |-  ( ph  ->  I  e.  W )
prdsinvlem.r  |-  ( ph  ->  R : I --> Grp )
prdsinvlem.f  |-  ( ph  ->  F  e.  B )
prdsinvlem.z  |-  .0.  =  ( 0g  o.  R
)
prdsinvlem.n  |-  N  =  ( y  e.  I  |->  ( ( invg `  ( R `  y
) ) `  ( F `  y )
) )
Assertion
Ref Expression
prdsinvlem  |-  ( ph  ->  ( N  e.  B  /\  ( N  .+  F
)  =  .0.  )
)
Distinct variable groups:    y, B    y, F    y, I    ph, y    y, R    y, S    y, V    y, W    y, Y
Allowed substitution hints:    .+ ( y)    N( y)    .0. ( y)

Proof of Theorem prdsinvlem
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 prdsinvlem.n . . 3  |-  N  =  ( y  e.  I  |->  ( ( invg `  ( R `  y
) ) `  ( F `  y )
) )
2 eqid 2196 . . . . . 6  |-  ( Base `  ( R `  y
) )  =  (
Base `  ( R `  y ) )
3 eqid 2196 . . . . . 6  |-  ( invg `  ( R `
 y ) )  =  ( invg `  ( R `  y
) )
4 prdsinvlem.r . . . . . . 7  |-  ( ph  ->  R : I --> Grp )
54ffvelcdmda 5700 . . . . . 6  |-  ( (
ph  /\  y  e.  I )  ->  ( R `  y )  e.  Grp )
6 prdsinvlem.y . . . . . . 7  |-  Y  =  ( S X_s R )
7 prdsinvlem.b . . . . . . 7  |-  B  =  ( Base `  Y
)
8 prdsinvlem.s . . . . . . . 8  |-  ( ph  ->  S  e.  V )
98adantr 276 . . . . . . 7  |-  ( (
ph  /\  y  e.  I )  ->  S  e.  V )
10 prdsinvlem.i . . . . . . . 8  |-  ( ph  ->  I  e.  W )
1110adantr 276 . . . . . . 7  |-  ( (
ph  /\  y  e.  I )  ->  I  e.  W )
124ffnd 5411 . . . . . . . 8  |-  ( ph  ->  R  Fn  I )
1312adantr 276 . . . . . . 7  |-  ( (
ph  /\  y  e.  I )  ->  R  Fn  I )
14 prdsinvlem.f . . . . . . . 8  |-  ( ph  ->  F  e.  B )
1514adantr 276 . . . . . . 7  |-  ( (
ph  /\  y  e.  I )  ->  F  e.  B )
16 simpr 110 . . . . . . 7  |-  ( (
ph  /\  y  e.  I )  ->  y  e.  I )
176, 7, 9, 11, 13, 15, 16prdsbasprj 12986 . . . . . 6  |-  ( (
ph  /\  y  e.  I )  ->  ( F `  y )  e.  ( Base `  ( R `  y )
) )
182, 3, 5, 17grpinvcld 13253 . . . . 5  |-  ( (
ph  /\  y  e.  I )  ->  (
( invg `  ( R `  y ) ) `  ( F `
 y ) )  e.  ( Base `  ( R `  y )
) )
1918ralrimiva 2570 . . . 4  |-  ( ph  ->  A. y  e.  I 
( ( invg `  ( R `  y
) ) `  ( F `  y )
)  e.  ( Base `  ( R `  y
) ) )
206, 7, 8, 10, 12prdsbasmpt 12984 . . . 4  |-  ( ph  ->  ( ( y  e.  I  |->  ( ( invg `  ( R `
 y ) ) `
 ( F `  y ) ) )  e.  B  <->  A. y  e.  I  ( ( invg `  ( R `
 y ) ) `
 ( F `  y ) )  e.  ( Base `  ( R `  y )
) ) )
2119, 20mpbird 167 . . 3  |-  ( ph  ->  ( y  e.  I  |->  ( ( invg `  ( R `  y
) ) `  ( F `  y )
) )  e.  B
)
221, 21eqeltrid 2283 . 2  |-  ( ph  ->  N  e.  B )
23 eqid 2196 . . . . . 6  |-  ( Base `  ( R `  x
) )  =  (
Base `  ( R `  x ) )
24 eqid 2196 . . . . . 6  |-  ( +g  `  ( R `  x
) )  =  ( +g  `  ( R `
 x ) )
25 eqid 2196 . . . . . 6  |-  ( 0g
`  ( R `  x ) )  =  ( 0g `  ( R `  x )
)
26 eqid 2196 . . . . . 6  |-  ( invg `  ( R `
 x ) )  =  ( invg `  ( R `  x
) )
274ffvelcdmda 5700 . . . . . 6  |-  ( (
ph  /\  x  e.  I )  ->  ( R `  x )  e.  Grp )
288adantr 276 . . . . . . 7  |-  ( (
ph  /\  x  e.  I )  ->  S  e.  V )
2910adantr 276 . . . . . . 7  |-  ( (
ph  /\  x  e.  I )  ->  I  e.  W )
3012adantr 276 . . . . . . 7  |-  ( (
ph  /\  x  e.  I )  ->  R  Fn  I )
3114adantr 276 . . . . . . 7  |-  ( (
ph  /\  x  e.  I )  ->  F  e.  B )
32 simpr 110 . . . . . . 7  |-  ( (
ph  /\  x  e.  I )  ->  x  e.  I )
336, 7, 28, 29, 30, 31, 32prdsbasprj 12986 . . . . . 6  |-  ( (
ph  /\  x  e.  I )  ->  ( F `  x )  e.  ( Base `  ( R `  x )
) )
3423, 24, 25, 26, 27, 33grplinvd 13259 . . . . 5  |-  ( (
ph  /\  x  e.  I )  ->  (
( ( invg `  ( R `  x
) ) `  ( F `  x )
) ( +g  `  ( R `  x )
) ( F `  x ) )  =  ( 0g `  ( R `  x )
) )
35 2fveq3 5566 . . . . . . . 8  |-  ( y  =  x  ->  ( invg `  ( R `
 y ) )  =  ( invg `  ( R `  x
) ) )
36 fveq2 5561 . . . . . . . 8  |-  ( y  =  x  ->  ( F `  y )  =  ( F `  x ) )
3735, 36fveq12d 5568 . . . . . . 7  |-  ( y  =  x  ->  (
( invg `  ( R `  y ) ) `  ( F `
 y ) )  =  ( ( invg `  ( R `
 x ) ) `
 ( F `  x ) ) )
3823, 26, 27, 33grpinvcld 13253 . . . . . . 7  |-  ( (
ph  /\  x  e.  I )  ->  (
( invg `  ( R `  x ) ) `  ( F `
 x ) )  e.  ( Base `  ( R `  x )
) )
391, 37, 32, 38fvmptd3 5658 . . . . . 6  |-  ( (
ph  /\  x  e.  I )  ->  ( N `  x )  =  ( ( invg `  ( R `
 x ) ) `
 ( F `  x ) ) )
4039oveq1d 5940 . . . . 5  |-  ( (
ph  /\  x  e.  I )  ->  (
( N `  x
) ( +g  `  ( R `  x )
) ( F `  x ) )  =  ( ( ( invg `  ( R `
 x ) ) `
 ( F `  x ) ) ( +g  `  ( R `
 x ) ) ( F `  x
) ) )
41 prdsinvlem.z . . . . . . 7  |-  .0.  =  ( 0g  o.  R
)
4241fveq1i 5562 . . . . . 6  |-  (  .0.  `  x )  =  ( ( 0g  o.  R
) `  x )
43 fvco2 5633 . . . . . . 7  |-  ( ( R  Fn  I  /\  x  e.  I )  ->  ( ( 0g  o.  R ) `  x
)  =  ( 0g
`  ( R `  x ) ) )
4412, 43sylan 283 . . . . . 6  |-  ( (
ph  /\  x  e.  I )  ->  (
( 0g  o.  R
) `  x )  =  ( 0g `  ( R `  x ) ) )
4542, 44eqtrid 2241 . . . . 5  |-  ( (
ph  /\  x  e.  I )  ->  (  .0.  `  x )  =  ( 0g `  ( R `  x )
) )
4634, 40, 453eqtr4d 2239 . . . 4  |-  ( (
ph  /\  x  e.  I )  ->  (
( N `  x
) ( +g  `  ( R `  x )
) ( F `  x ) )  =  (  .0.  `  x
) )
4746mpteq2dva 4124 . . 3  |-  ( ph  ->  ( x  e.  I  |->  ( ( N `  x ) ( +g  `  ( R `  x
) ) ( F `
 x ) ) )  =  ( x  e.  I  |->  (  .0.  `  x ) ) )
48 prdsinvlem.p . . . 4  |-  .+  =  ( +g  `  Y )
496, 7, 8, 10, 12, 22, 14, 48prdsplusgval 12987 . . 3  |-  ( ph  ->  ( N  .+  F
)  =  ( x  e.  I  |->  ( ( N `  x ) ( +g  `  ( R `  x )
) ( F `  x ) ) ) )
50 fn0g 13079 . . . . . 6  |-  0g  Fn  _V
51 ssv 3206 . . . . . . 7  |-  ran  R  C_ 
_V
5251a1i 9 . . . . . 6  |-  ( ph  ->  ran  R  C_  _V )
53 fnco 5369 . . . . . 6  |-  ( ( 0g  Fn  _V  /\  R  Fn  I  /\  ran  R  C_  _V )  ->  ( 0g  o.  R
)  Fn  I )
5450, 12, 52, 53mp3an2i 1353 . . . . 5  |-  ( ph  ->  ( 0g  o.  R
)  Fn  I )
5541fneq1i 5353 . . . . 5  |-  (  .0. 
Fn  I  <->  ( 0g  o.  R )  Fn  I
)
5654, 55sylibr 134 . . . 4  |-  ( ph  ->  .0.  Fn  I )
57 dffn5im 5609 . . . 4  |-  (  .0. 
Fn  I  ->  .0.  =  ( x  e.  I  |->  (  .0.  `  x ) ) )
5856, 57syl 14 . . 3  |-  ( ph  ->  .0.  =  ( x  e.  I  |->  (  .0.  `  x ) ) )
5947, 49, 583eqtr4d 2239 . 2  |-  ( ph  ->  ( N  .+  F
)  =  .0.  )
6022, 59jca 306 1  |-  ( ph  ->  ( N  e.  B  /\  ( N  .+  F
)  =  .0.  )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   A.wral 2475   _Vcvv 2763    C_ wss 3157    |-> cmpt 4095   ran crn 4665    o. ccom 4668    Fn wfn 5254   -->wf 5255   ` cfv 5259  (class class class)co 5925   Basecbs 12705   +g cplusg 12782   0gc0g 12960   X_scprds 12969   Grpcgrp 13204   invgcminusg 13205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-addcom 7998  ax-mulcom 7999  ax-addass 8000  ax-mulass 8001  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-1rid 8005  ax-0id 8006  ax-rnegex 8007  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-tp 3631  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-map 6718  df-ixp 6767  df-sup 7059  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-inn 9010  df-2 9068  df-3 9069  df-4 9070  df-5 9071  df-6 9072  df-7 9073  df-8 9074  df-9 9075  df-n0 9269  df-z 9346  df-dec 9477  df-uz 9621  df-fz 10103  df-struct 12707  df-ndx 12708  df-slot 12709  df-base 12711  df-plusg 12795  df-mulr 12796  df-sca 12798  df-vsca 12799  df-ip 12800  df-tset 12801  df-ple 12802  df-ds 12804  df-hom 12806  df-cco 12807  df-rest 12945  df-topn 12946  df-0g 12962  df-topgen 12964  df-pt 12965  df-prds 12971  df-mgm 13060  df-sgrp 13106  df-mnd 13121  df-grp 13207  df-minusg 13208
This theorem is referenced by:  prdsgrpd  13313  prdsinvgd  13314
  Copyright terms: Public domain W3C validator