ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prdsinvlem Unicode version

Theorem prdsinvlem 13627
Description: Characterization of inverses in a structure product. (Contributed by Mario Carneiro, 10-Jan-2015.)
Hypotheses
Ref Expression
prdsinvlem.y  |-  Y  =  ( S X_s R )
prdsinvlem.b  |-  B  =  ( Base `  Y
)
prdsinvlem.p  |-  .+  =  ( +g  `  Y )
prdsinvlem.s  |-  ( ph  ->  S  e.  V )
prdsinvlem.i  |-  ( ph  ->  I  e.  W )
prdsinvlem.r  |-  ( ph  ->  R : I --> Grp )
prdsinvlem.f  |-  ( ph  ->  F  e.  B )
prdsinvlem.z  |-  .0.  =  ( 0g  o.  R
)
prdsinvlem.n  |-  N  =  ( y  e.  I  |->  ( ( invg `  ( R `  y
) ) `  ( F `  y )
) )
Assertion
Ref Expression
prdsinvlem  |-  ( ph  ->  ( N  e.  B  /\  ( N  .+  F
)  =  .0.  )
)
Distinct variable groups:    y, B    y, F    y, I    ph, y    y, R    y, S    y, V    y, W    y, Y
Allowed substitution hints:    .+ ( y)    N( y)    .0. ( y)

Proof of Theorem prdsinvlem
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 prdsinvlem.n . . 3  |-  N  =  ( y  e.  I  |->  ( ( invg `  ( R `  y
) ) `  ( F `  y )
) )
2 eqid 2229 . . . . . 6  |-  ( Base `  ( R `  y
) )  =  (
Base `  ( R `  y ) )
3 eqid 2229 . . . . . 6  |-  ( invg `  ( R `
 y ) )  =  ( invg `  ( R `  y
) )
4 prdsinvlem.r . . . . . . 7  |-  ( ph  ->  R : I --> Grp )
54ffvelcdmda 5763 . . . . . 6  |-  ( (
ph  /\  y  e.  I )  ->  ( R `  y )  e.  Grp )
6 prdsinvlem.y . . . . . . 7  |-  Y  =  ( S X_s R )
7 prdsinvlem.b . . . . . . 7  |-  B  =  ( Base `  Y
)
8 prdsinvlem.s . . . . . . . 8  |-  ( ph  ->  S  e.  V )
98adantr 276 . . . . . . 7  |-  ( (
ph  /\  y  e.  I )  ->  S  e.  V )
10 prdsinvlem.i . . . . . . . 8  |-  ( ph  ->  I  e.  W )
1110adantr 276 . . . . . . 7  |-  ( (
ph  /\  y  e.  I )  ->  I  e.  W )
124ffnd 5470 . . . . . . . 8  |-  ( ph  ->  R  Fn  I )
1312adantr 276 . . . . . . 7  |-  ( (
ph  /\  y  e.  I )  ->  R  Fn  I )
14 prdsinvlem.f . . . . . . . 8  |-  ( ph  ->  F  e.  B )
1514adantr 276 . . . . . . 7  |-  ( (
ph  /\  y  e.  I )  ->  F  e.  B )
16 simpr 110 . . . . . . 7  |-  ( (
ph  /\  y  e.  I )  ->  y  e.  I )
176, 7, 9, 11, 13, 15, 16prdsbasprj 13301 . . . . . 6  |-  ( (
ph  /\  y  e.  I )  ->  ( F `  y )  e.  ( Base `  ( R `  y )
) )
182, 3, 5, 17grpinvcld 13568 . . . . 5  |-  ( (
ph  /\  y  e.  I )  ->  (
( invg `  ( R `  y ) ) `  ( F `
 y ) )  e.  ( Base `  ( R `  y )
) )
1918ralrimiva 2603 . . . 4  |-  ( ph  ->  A. y  e.  I 
( ( invg `  ( R `  y
) ) `  ( F `  y )
)  e.  ( Base `  ( R `  y
) ) )
206, 7, 8, 10, 12prdsbasmpt 13299 . . . 4  |-  ( ph  ->  ( ( y  e.  I  |->  ( ( invg `  ( R `
 y ) ) `
 ( F `  y ) ) )  e.  B  <->  A. y  e.  I  ( ( invg `  ( R `
 y ) ) `
 ( F `  y ) )  e.  ( Base `  ( R `  y )
) ) )
2119, 20mpbird 167 . . 3  |-  ( ph  ->  ( y  e.  I  |->  ( ( invg `  ( R `  y
) ) `  ( F `  y )
) )  e.  B
)
221, 21eqeltrid 2316 . 2  |-  ( ph  ->  N  e.  B )
23 eqid 2229 . . . . . 6  |-  ( Base `  ( R `  x
) )  =  (
Base `  ( R `  x ) )
24 eqid 2229 . . . . . 6  |-  ( +g  `  ( R `  x
) )  =  ( +g  `  ( R `
 x ) )
25 eqid 2229 . . . . . 6  |-  ( 0g
`  ( R `  x ) )  =  ( 0g `  ( R `  x )
)
26 eqid 2229 . . . . . 6  |-  ( invg `  ( R `
 x ) )  =  ( invg `  ( R `  x
) )
274ffvelcdmda 5763 . . . . . 6  |-  ( (
ph  /\  x  e.  I )  ->  ( R `  x )  e.  Grp )
288adantr 276 . . . . . . 7  |-  ( (
ph  /\  x  e.  I )  ->  S  e.  V )
2910adantr 276 . . . . . . 7  |-  ( (
ph  /\  x  e.  I )  ->  I  e.  W )
3012adantr 276 . . . . . . 7  |-  ( (
ph  /\  x  e.  I )  ->  R  Fn  I )
3114adantr 276 . . . . . . 7  |-  ( (
ph  /\  x  e.  I )  ->  F  e.  B )
32 simpr 110 . . . . . . 7  |-  ( (
ph  /\  x  e.  I )  ->  x  e.  I )
336, 7, 28, 29, 30, 31, 32prdsbasprj 13301 . . . . . 6  |-  ( (
ph  /\  x  e.  I )  ->  ( F `  x )  e.  ( Base `  ( R `  x )
) )
3423, 24, 25, 26, 27, 33grplinvd 13574 . . . . 5  |-  ( (
ph  /\  x  e.  I )  ->  (
( ( invg `  ( R `  x
) ) `  ( F `  x )
) ( +g  `  ( R `  x )
) ( F `  x ) )  =  ( 0g `  ( R `  x )
) )
35 2fveq3 5628 . . . . . . . 8  |-  ( y  =  x  ->  ( invg `  ( R `
 y ) )  =  ( invg `  ( R `  x
) ) )
36 fveq2 5623 . . . . . . . 8  |-  ( y  =  x  ->  ( F `  y )  =  ( F `  x ) )
3735, 36fveq12d 5630 . . . . . . 7  |-  ( y  =  x  ->  (
( invg `  ( R `  y ) ) `  ( F `
 y ) )  =  ( ( invg `  ( R `
 x ) ) `
 ( F `  x ) ) )
3823, 26, 27, 33grpinvcld 13568 . . . . . . 7  |-  ( (
ph  /\  x  e.  I )  ->  (
( invg `  ( R `  x ) ) `  ( F `
 x ) )  e.  ( Base `  ( R `  x )
) )
391, 37, 32, 38fvmptd3 5721 . . . . . 6  |-  ( (
ph  /\  x  e.  I )  ->  ( N `  x )  =  ( ( invg `  ( R `
 x ) ) `
 ( F `  x ) ) )
4039oveq1d 6009 . . . . 5  |-  ( (
ph  /\  x  e.  I )  ->  (
( N `  x
) ( +g  `  ( R `  x )
) ( F `  x ) )  =  ( ( ( invg `  ( R `
 x ) ) `
 ( F `  x ) ) ( +g  `  ( R `
 x ) ) ( F `  x
) ) )
41 prdsinvlem.z . . . . . . 7  |-  .0.  =  ( 0g  o.  R
)
4241fveq1i 5624 . . . . . 6  |-  (  .0.  `  x )  =  ( ( 0g  o.  R
) `  x )
43 fvco2 5696 . . . . . . 7  |-  ( ( R  Fn  I  /\  x  e.  I )  ->  ( ( 0g  o.  R ) `  x
)  =  ( 0g
`  ( R `  x ) ) )
4412, 43sylan 283 . . . . . 6  |-  ( (
ph  /\  x  e.  I )  ->  (
( 0g  o.  R
) `  x )  =  ( 0g `  ( R `  x ) ) )
4542, 44eqtrid 2274 . . . . 5  |-  ( (
ph  /\  x  e.  I )  ->  (  .0.  `  x )  =  ( 0g `  ( R `  x )
) )
4634, 40, 453eqtr4d 2272 . . . 4  |-  ( (
ph  /\  x  e.  I )  ->  (
( N `  x
) ( +g  `  ( R `  x )
) ( F `  x ) )  =  (  .0.  `  x
) )
4746mpteq2dva 4173 . . 3  |-  ( ph  ->  ( x  e.  I  |->  ( ( N `  x ) ( +g  `  ( R `  x
) ) ( F `
 x ) ) )  =  ( x  e.  I  |->  (  .0.  `  x ) ) )
48 prdsinvlem.p . . . 4  |-  .+  =  ( +g  `  Y )
496, 7, 8, 10, 12, 22, 14, 48prdsplusgval 13302 . . 3  |-  ( ph  ->  ( N  .+  F
)  =  ( x  e.  I  |->  ( ( N `  x ) ( +g  `  ( R `  x )
) ( F `  x ) ) ) )
50 fn0g 13394 . . . . . 6  |-  0g  Fn  _V
51 ssv 3246 . . . . . . 7  |-  ran  R  C_ 
_V
5251a1i 9 . . . . . 6  |-  ( ph  ->  ran  R  C_  _V )
53 fnco 5427 . . . . . 6  |-  ( ( 0g  Fn  _V  /\  R  Fn  I  /\  ran  R  C_  _V )  ->  ( 0g  o.  R
)  Fn  I )
5450, 12, 52, 53mp3an2i 1376 . . . . 5  |-  ( ph  ->  ( 0g  o.  R
)  Fn  I )
5541fneq1i 5411 . . . . 5  |-  (  .0. 
Fn  I  <->  ( 0g  o.  R )  Fn  I
)
5654, 55sylibr 134 . . . 4  |-  ( ph  ->  .0.  Fn  I )
57 dffn5im 5672 . . . 4  |-  (  .0. 
Fn  I  ->  .0.  =  ( x  e.  I  |->  (  .0.  `  x ) ) )
5856, 57syl 14 . . 3  |-  ( ph  ->  .0.  =  ( x  e.  I  |->  (  .0.  `  x ) ) )
5947, 49, 583eqtr4d 2272 . 2  |-  ( ph  ->  ( N  .+  F
)  =  .0.  )
6022, 59jca 306 1  |-  ( ph  ->  ( N  e.  B  /\  ( N  .+  F
)  =  .0.  )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   A.wral 2508   _Vcvv 2799    C_ wss 3197    |-> cmpt 4144   ran crn 4717    o. ccom 4720    Fn wfn 5309   -->wf 5310   ` cfv 5314  (class class class)co 5994   Basecbs 13018   +g cplusg 13096   0gc0g 13275   X_scprds 13284   Grpcgrp 13519   invgcminusg 13520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-addcom 8087  ax-mulcom 8088  ax-addass 8089  ax-mulass 8090  ax-distr 8091  ax-i2m1 8092  ax-0lt1 8093  ax-1rid 8094  ax-0id 8095  ax-rnegex 8096  ax-cnre 8098  ax-pre-ltirr 8099  ax-pre-ltwlin 8100  ax-pre-lttrn 8101  ax-pre-apti 8102  ax-pre-ltadd 8103
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-tp 3674  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-map 6787  df-ixp 6836  df-sup 7139  df-pnf 8171  df-mnf 8172  df-xr 8173  df-ltxr 8174  df-le 8175  df-sub 8307  df-neg 8308  df-inn 9099  df-2 9157  df-3 9158  df-4 9159  df-5 9160  df-6 9161  df-7 9162  df-8 9163  df-9 9164  df-n0 9358  df-z 9435  df-dec 9567  df-uz 9711  df-fz 10193  df-struct 13020  df-ndx 13021  df-slot 13022  df-base 13024  df-plusg 13109  df-mulr 13110  df-sca 13112  df-vsca 13113  df-ip 13114  df-tset 13115  df-ple 13116  df-ds 13118  df-hom 13120  df-cco 13121  df-rest 13260  df-topn 13261  df-0g 13277  df-topgen 13279  df-pt 13280  df-prds 13286  df-mgm 13375  df-sgrp 13421  df-mnd 13436  df-grp 13522  df-minusg 13523
This theorem is referenced by:  prdsgrpd  13628  prdsinvgd  13629
  Copyright terms: Public domain W3C validator