ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  wlkvtxiedg Unicode version

Theorem wlkvtxiedg 16056
Description: The vertices of a walk are connected by indexed edges. (Contributed by Alexander van der Vekens, 22-Jul-2018.) (Revised by AV, 2-Jan-2021.) (Proof shortened by AV, 4-Apr-2021.)
Hypothesis
Ref Expression
wlkvtxeledg.i  |-  I  =  (iEdg `  G )
Assertion
Ref Expression
wlkvtxiedg  |-  ( F (Walks `  G ) P  ->  A. k  e.  ( 0..^ ( `  F
) ) E. e  e.  ran  I { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  C_  e )
Distinct variable groups:    k, G    k, F    P, k    e, F   
e, G    e, I,
k    P, e

Proof of Theorem wlkvtxiedg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wlkv 16038 . . . 4  |-  ( F (Walks `  G ) P  ->  ( G  e. 
_V  /\  F  e.  _V  /\  P  e.  _V ) )
21simp1d 1033 . . 3  |-  ( F (Walks `  G ) P  ->  G  e.  _V )
3 wlkvtxeledg.i . . . 4  |-  I  =  (iEdg `  G )
43wlkvtxeledgg 16055 . . 3  |-  ( ( G  e.  _V  /\  F (Walks `  G ) P )  ->  A. k  e.  ( 0..^ ( `  F
) ) { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  C_  ( I `  ( F `  k )
) )
52, 4mpancom 422 . 2  |-  ( F (Walks `  G ) P  ->  A. k  e.  ( 0..^ ( `  F
) ) { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  C_  ( I `  ( F `  k )
) )
6 eqid 2229 . . . . . . . . . . . 12  |-  (Vtx `  G )  =  (Vtx
`  G )
76wlkpg 16047 . . . . . . . . . . 11  |-  ( ( G  e.  _V  /\  F (Walks `  G ) P )  ->  P : ( 0 ... ( `  F )
) --> (Vtx `  G
) )
87adantr 276 . . . . . . . . . 10  |-  ( ( ( G  e.  _V  /\  F (Walks `  G
) P )  /\  k  e.  ( 0..^ ( `  F )
) )  ->  P : ( 0 ... ( `  F )
) --> (Vtx `  G
) )
9 elfzofz 10359 . . . . . . . . . . 11  |-  ( k  e.  ( 0..^ ( `  F ) )  -> 
k  e.  ( 0 ... ( `  F
) ) )
109adantl 277 . . . . . . . . . 10  |-  ( ( ( G  e.  _V  /\  F (Walks `  G
) P )  /\  k  e.  ( 0..^ ( `  F )
) )  ->  k  e.  ( 0 ... ( `  F ) ) )
118, 10ffvelcdmd 5771 . . . . . . . . 9  |-  ( ( ( G  e.  _V  /\  F (Walks `  G
) P )  /\  k  e.  ( 0..^ ( `  F )
) )  ->  ( P `  k )  e.  (Vtx `  G )
)
12 prmg 3789 . . . . . . . . 9  |-  ( ( P `  k )  e.  (Vtx `  G
)  ->  E. x  x  e.  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } )
1311, 12syl 14 . . . . . . . 8  |-  ( ( ( G  e.  _V  /\  F (Walks `  G
) P )  /\  k  e.  ( 0..^ ( `  F )
) )  ->  E. x  x  e.  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } )
1413adantr 276 . . . . . . 7  |-  ( ( ( ( G  e. 
_V  /\  F (Walks `  G ) P )  /\  k  e.  ( 0..^ ( `  F
) ) )  /\  { ( P `  k
) ,  ( P `
 ( k  +  1 ) ) } 
C_  ( I `  ( F `  k ) ) )  ->  E. x  x  e.  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } )
151simp2d 1034 . . . . . . . . . . . 12  |-  ( F (Walks `  G ) P  ->  F  e.  _V )
1615adantl 277 . . . . . . . . . . 11  |-  ( ( G  e.  _V  /\  F (Walks `  G ) P )  ->  F  e.  _V )
17 vex 2802 . . . . . . . . . . 11  |-  k  e. 
_V
18 fvexg 5646 . . . . . . . . . . 11  |-  ( ( F  e.  _V  /\  k  e.  _V )  ->  ( F `  k
)  e.  _V )
1916, 17, 18sylancl 413 . . . . . . . . . 10  |-  ( ( G  e.  _V  /\  F (Walks `  G ) P )  ->  ( F `  k )  e.  _V )
2019ad3antrrr 492 . . . . . . . . 9  |-  ( ( ( ( ( G  e.  _V  /\  F
(Walks `  G ) P )  /\  k  e.  ( 0..^ ( `  F
) ) )  /\  { ( P `  k
) ,  ( P `
 ( k  +  1 ) ) } 
C_  ( I `  ( F `  k ) ) )  /\  x  e.  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } )  ->  ( F `  k )  e.  _V )
21 simplr 528 . . . . . . . . . . 11  |-  ( ( ( ( ( G  e.  _V  /\  F
(Walks `  G ) P )  /\  k  e.  ( 0..^ ( `  F
) ) )  /\  { ( P `  k
) ,  ( P `
 ( k  +  1 ) ) } 
C_  ( I `  ( F `  k ) ) )  /\  x  e.  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } )  ->  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  C_  ( I `  ( F `  k )
) )
22 simpr 110 . . . . . . . . . . 11  |-  ( ( ( ( ( G  e.  _V  /\  F
(Walks `  G ) P )  /\  k  e.  ( 0..^ ( `  F
) ) )  /\  { ( P `  k
) ,  ( P `
 ( k  +  1 ) ) } 
C_  ( I `  ( F `  k ) ) )  /\  x  e.  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } )  ->  x  e.  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } )
2321, 22sseldd 3225 . . . . . . . . . 10  |-  ( ( ( ( ( G  e.  _V  /\  F
(Walks `  G ) P )  /\  k  e.  ( 0..^ ( `  F
) ) )  /\  { ( P `  k
) ,  ( P `
 ( k  +  1 ) ) } 
C_  ( I `  ( F `  k ) ) )  /\  x  e.  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } )  ->  x  e.  ( I `  ( F `  k )
) )
24 fvmbr 5662 . . . . . . . . . 10  |-  ( x  e.  ( I `  ( F `  k ) )  ->  ( F `  k ) I ( I `  ( F `
 k ) ) )
2523, 24syl 14 . . . . . . . . 9  |-  ( ( ( ( ( G  e.  _V  /\  F
(Walks `  G ) P )  /\  k  e.  ( 0..^ ( `  F
) ) )  /\  { ( P `  k
) ,  ( P `
 ( k  +  1 ) ) } 
C_  ( I `  ( F `  k ) ) )  /\  x  e.  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } )  ->  ( F `  k )
I ( I `  ( F `  k ) ) )
26 breq1 4086 . . . . . . . . 9  |-  ( y  =  ( F `  k )  ->  (
y I ( I `
 ( F `  k ) )  <->  ( F `  k ) I ( I `  ( F `
 k ) ) ) )
2720, 25, 26elabd 2948 . . . . . . . 8  |-  ( ( ( ( ( G  e.  _V  /\  F
(Walks `  G ) P )  /\  k  e.  ( 0..^ ( `  F
) ) )  /\  { ( P `  k
) ,  ( P `
 ( k  +  1 ) ) } 
C_  ( I `  ( F `  k ) ) )  /\  x  e.  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } )  ->  E. y 
y I ( I `
 ( F `  k ) ) )
28 elfvex 5661 . . . . . . . . 9  |-  ( x  e.  ( I `  ( F `  k ) )  ->  ( I `  ( F `  k
) )  e.  _V )
29 elrng 4913 . . . . . . . . 9  |-  ( ( I `  ( F `
 k ) )  e.  _V  ->  (
( I `  ( F `  k )
)  e.  ran  I  <->  E. y  y I ( I `  ( F `
 k ) ) ) )
3023, 28, 293syl 17 . . . . . . . 8  |-  ( ( ( ( ( G  e.  _V  /\  F
(Walks `  G ) P )  /\  k  e.  ( 0..^ ( `  F
) ) )  /\  { ( P `  k
) ,  ( P `
 ( k  +  1 ) ) } 
C_  ( I `  ( F `  k ) ) )  /\  x  e.  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } )  ->  (
( I `  ( F `  k )
)  e.  ran  I  <->  E. y  y I ( I `  ( F `
 k ) ) ) )
3127, 30mpbird 167 . . . . . . 7  |-  ( ( ( ( ( G  e.  _V  /\  F
(Walks `  G ) P )  /\  k  e.  ( 0..^ ( `  F
) ) )  /\  { ( P `  k
) ,  ( P `
 ( k  +  1 ) ) } 
C_  ( I `  ( F `  k ) ) )  /\  x  e.  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) } )  ->  (
I `  ( F `  k ) )  e. 
ran  I )
3214, 31exlimddv 1945 . . . . . 6  |-  ( ( ( ( G  e. 
_V  /\  F (Walks `  G ) P )  /\  k  e.  ( 0..^ ( `  F
) ) )  /\  { ( P `  k
) ,  ( P `
 ( k  +  1 ) ) } 
C_  ( I `  ( F `  k ) ) )  ->  (
I `  ( F `  k ) )  e. 
ran  I )
33 sseq2 3248 . . . . . . 7  |-  ( e  =  ( I `  ( F `  k ) )  ->  ( {
( P `  k
) ,  ( P `
 ( k  +  1 ) ) } 
C_  e  <->  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  C_  ( I `  ( F `  k )
) ) )
3433adantl 277 . . . . . 6  |-  ( ( ( ( ( G  e.  _V  /\  F
(Walks `  G ) P )  /\  k  e.  ( 0..^ ( `  F
) ) )  /\  { ( P `  k
) ,  ( P `
 ( k  +  1 ) ) } 
C_  ( I `  ( F `  k ) ) )  /\  e  =  ( I `  ( F `  k ) ) )  ->  ( { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  C_  e  <->  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  C_  ( I `  ( F `  k )
) ) )
35 simpr 110 . . . . . 6  |-  ( ( ( ( G  e. 
_V  /\  F (Walks `  G ) P )  /\  k  e.  ( 0..^ ( `  F
) ) )  /\  { ( P `  k
) ,  ( P `
 ( k  +  1 ) ) } 
C_  ( I `  ( F `  k ) ) )  ->  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  C_  ( I `  ( F `  k )
) )
3632, 34, 35rspcedvd 2913 . . . . 5  |-  ( ( ( ( G  e. 
_V  /\  F (Walks `  G ) P )  /\  k  e.  ( 0..^ ( `  F
) ) )  /\  { ( P `  k
) ,  ( P `
 ( k  +  1 ) ) } 
C_  ( I `  ( F `  k ) ) )  ->  E. e  e.  ran  I { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  C_  e )
3736ex 115 . . . 4  |-  ( ( ( G  e.  _V  /\  F (Walks `  G
) P )  /\  k  e.  ( 0..^ ( `  F )
) )  ->  ( { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  C_  ( I `  ( F `  k
) )  ->  E. e  e.  ran  I { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  C_  e ) )
3837ralimdva 2597 . . 3  |-  ( ( G  e.  _V  /\  F (Walks `  G ) P )  ->  ( A. k  e.  (
0..^ ( `  F )
) { ( P `
 k ) ,  ( P `  (
k  +  1 ) ) }  C_  (
I `  ( F `  k ) )  ->  A. k  e.  (
0..^ ( `  F )
) E. e  e. 
ran  I { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  C_  e ) )
392, 38mpancom 422 . 2  |-  ( F (Walks `  G ) P  ->  ( A. k  e.  ( 0..^ ( `  F
) ) { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  C_  ( I `  ( F `  k )
)  ->  A. k  e.  ( 0..^ ( `  F
) ) E. e  e.  ran  I { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  C_  e ) )
405, 39mpd 13 1  |-  ( F (Walks `  G ) P  ->  A. k  e.  ( 0..^ ( `  F
) ) E. e  e.  ran  I { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  C_  e )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395   E.wex 1538    e. wcel 2200   A.wral 2508   E.wrex 2509   _Vcvv 2799    C_ wss 3197   {cpr 3667   class class class wbr 4083   ran crn 4720   -->wf 5314   ` cfv 5318  (class class class)co 6001   0cc0 7999   1c1 8000    + caddc 8002   ...cfz 10204  ..^cfzo 10338  ♯chash 10997  Vtxcvtx 15813  iEdgciedg 15814  Walkscwlks 16030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-dc 840  df-ifp 984  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-frec 6537  df-1o 6562  df-er 6680  df-map 6797  df-en 6888  df-dom 6889  df-fin 6890  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-5 9172  df-6 9173  df-7 9174  df-8 9175  df-9 9176  df-n0 9370  df-z 9447  df-dec 9579  df-uz 9723  df-fz 10205  df-fzo 10339  df-ihash 10998  df-word 11072  df-ndx 13035  df-slot 13036  df-base 13038  df-edgf 15806  df-vtx 15815  df-iedg 15816  df-wlks 16031
This theorem is referenced by:  wlkvtxedg  16074
  Copyright terms: Public domain W3C validator