| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > negsubd | GIF version | ||
| Description: Relationship between subtraction and negative. Theorem I.3 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| negidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| pncand.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| Ref | Expression |
|---|---|
| negsubd | ⊢ (𝜑 → (𝐴 + -𝐵) = (𝐴 − 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | pncand.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 3 | negsub 8302 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + -𝐵) = (𝐴 − 𝐵)) | |
| 4 | 1, 2, 3 | syl2anc 411 | 1 ⊢ (𝜑 → (𝐴 + -𝐵) = (𝐴 − 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 ∈ wcel 2175 (class class class)co 5934 ℂcc 7905 + caddc 7910 − cmin 8225 -cneg 8226 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-setind 4583 ax-resscn 7999 ax-1cn 8000 ax-icn 8002 ax-addcl 8003 ax-addrcl 8004 ax-mulcl 8005 ax-addcom 8007 ax-addass 8009 ax-distr 8011 ax-i2m1 8012 ax-0id 8015 ax-rnegex 8016 ax-cnre 8018 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-id 4338 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-iota 5229 df-fun 5270 df-fv 5276 df-riota 5889 df-ov 5937 df-oprab 5938 df-mpo 5939 df-sub 8227 df-neg 8228 |
| This theorem is referenced by: mulsub 8455 apsub1 8697 divsubdirap 8763 divsubdivap 8783 div2subap 8892 ofnegsub 9017 zaddcllemneg 9393 icoshftf1o 10095 fzosubel 10304 ceiqm1l 10437 modqcyc2 10486 qnegmod 10495 modqsub12d 10507 modsumfzodifsn 10522 expaddzaplem 10708 binom2sub 10779 seq3shft 11068 cjreb 11096 recj 11097 remullem 11101 imcj 11105 resqrexlemover 11240 resqrexlemcalc1 11244 resqrexlemcalc3 11246 bdtri 11470 subcn2 11541 fsumshftm 11675 fsumsub 11682 geosergap 11736 efmival 11963 cosadd 11967 sinsub 11970 sincossq 11978 cos12dec 11998 moddvds 12029 dvdsadd2b 12070 pythagtriplem4 12510 mulgdirlem 13407 mulgmodid 13415 mulgsubdir 13416 gsumfzconst 13595 dvmptsubcn 15113 cosq34lt1 15240 rpcxpsub 15298 rpabscxpbnd 15330 rprelogbdiv 15347 lgseisenlem1 15465 2sqlem4 15513 apdifflemr 15850 |
| Copyright terms: Public domain | W3C validator |