| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > negsubd | GIF version | ||
| Description: Relationship between subtraction and negative. Theorem I.3 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.) | 
| Ref | Expression | 
|---|---|
| negidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) | 
| pncand.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) | 
| Ref | Expression | 
|---|---|
| negsubd | ⊢ (𝜑 → (𝐴 + -𝐵) = (𝐴 − 𝐵)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | negidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | pncand.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 3 | negsub 8274 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + -𝐵) = (𝐴 − 𝐵)) | |
| 4 | 1, 2, 3 | syl2anc 411 | 1 ⊢ (𝜑 → (𝐴 + -𝐵) = (𝐴 − 𝐵)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 (class class class)co 5922 ℂcc 7877 + caddc 7882 − cmin 8197 -cneg 8198 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-setind 4573 ax-resscn 7971 ax-1cn 7972 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-sub 8199 df-neg 8200 | 
| This theorem is referenced by: mulsub 8427 apsub1 8669 divsubdirap 8735 divsubdivap 8755 div2subap 8864 ofnegsub 8989 zaddcllemneg 9365 icoshftf1o 10066 fzosubel 10270 ceiqm1l 10403 modqcyc2 10452 qnegmod 10461 modqsub12d 10473 modsumfzodifsn 10488 expaddzaplem 10674 binom2sub 10745 seq3shft 11003 cjreb 11031 recj 11032 remullem 11036 imcj 11040 resqrexlemover 11175 resqrexlemcalc1 11179 resqrexlemcalc3 11181 bdtri 11405 subcn2 11476 fsumshftm 11610 fsumsub 11617 geosergap 11671 efmival 11898 cosadd 11902 sinsub 11905 sincossq 11913 cos12dec 11933 moddvds 11964 dvdsadd2b 12005 pythagtriplem4 12437 mulgdirlem 13283 mulgmodid 13291 mulgsubdir 13292 gsumfzconst 13471 dvmptsubcn 14959 cosq34lt1 15086 rpcxpsub 15144 rpabscxpbnd 15176 rprelogbdiv 15193 lgseisenlem1 15311 2sqlem4 15359 apdifflemr 15691 | 
| Copyright terms: Public domain | W3C validator |