ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  negsubd GIF version

Theorem negsubd 8459
Description: Relationship between subtraction and negative. Theorem I.3 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
negidd.1 (𝜑𝐴 ∈ ℂ)
pncand.2 (𝜑𝐵 ∈ ℂ)
Assertion
Ref Expression
negsubd (𝜑 → (𝐴 + -𝐵) = (𝐴𝐵))

Proof of Theorem negsubd
StepHypRef Expression
1 negidd.1 . 2 (𝜑𝐴 ∈ ℂ)
2 pncand.2 . 2 (𝜑𝐵 ∈ ℂ)
3 negsub 8390 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + -𝐵) = (𝐴𝐵))
41, 2, 3syl2anc 411 1 (𝜑 → (𝐴 + -𝐵) = (𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wcel 2200  (class class class)co 6000  cc 7993   + caddc 7998  cmin 8313  -cneg 8314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-setind 4628  ax-resscn 8087  ax-1cn 8088  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-distr 8099  ax-i2m1 8100  ax-0id 8103  ax-rnegex 8104  ax-cnre 8106
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-iota 5277  df-fun 5319  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-sub 8315  df-neg 8316
This theorem is referenced by:  mulsub  8543  apsub1  8785  divsubdirap  8851  divsubdivap  8871  div2subap  8980  ofnegsub  9105  zaddcllemneg  9481  icoshftf1o  10183  fzosubel  10395  ceiqm1l  10528  modqcyc2  10577  qnegmod  10586  modqsub12d  10598  modsumfzodifsn  10613  expaddzaplem  10799  binom2sub  10870  seq3shft  11344  cjreb  11372  recj  11373  remullem  11377  imcj  11381  resqrexlemover  11516  resqrexlemcalc1  11520  resqrexlemcalc3  11522  bdtri  11746  subcn2  11817  fsumshftm  11951  fsumsub  11958  geosergap  12012  efmival  12239  cosadd  12243  sinsub  12246  sincossq  12254  cos12dec  12274  moddvds  12305  dvdsadd2b  12346  pythagtriplem4  12786  mulgdirlem  13685  mulgmodid  13693  mulgsubdir  13694  gsumfzconst  13873  dvmptsubcn  15391  cosq34lt1  15518  rpcxpsub  15576  rpabscxpbnd  15608  rprelogbdiv  15625  lgseisenlem1  15743  2sqlem4  15791  apdifflemr  16374
  Copyright terms: Public domain W3C validator