ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  negsubd GIF version

Theorem negsubd 8338
Description: Relationship between subtraction and negative. Theorem I.3 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
negidd.1 (𝜑𝐴 ∈ ℂ)
pncand.2 (𝜑𝐵 ∈ ℂ)
Assertion
Ref Expression
negsubd (𝜑 → (𝐴 + -𝐵) = (𝐴𝐵))

Proof of Theorem negsubd
StepHypRef Expression
1 negidd.1 . 2 (𝜑𝐴 ∈ ℂ)
2 pncand.2 . 2 (𝜑𝐵 ∈ ℂ)
3 negsub 8269 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + -𝐵) = (𝐴𝐵))
41, 2, 3syl2anc 411 1 (𝜑 → (𝐴 + -𝐵) = (𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2164  (class class class)co 5919  cc 7872   + caddc 7877  cmin 8192  -cneg 8193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-setind 4570  ax-resscn 7966  ax-1cn 7967  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-distr 7978  ax-i2m1 7979  ax-0id 7982  ax-rnegex 7983  ax-cnre 7985
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-iota 5216  df-fun 5257  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-sub 8194  df-neg 8195
This theorem is referenced by:  mulsub  8422  apsub1  8663  divsubdirap  8729  divsubdivap  8749  div2subap  8858  ofnegsub  8983  zaddcllemneg  9359  icoshftf1o  10060  fzosubel  10264  ceiqm1l  10385  modqcyc2  10434  qnegmod  10443  modqsub12d  10455  modsumfzodifsn  10470  expaddzaplem  10656  binom2sub  10727  seq3shft  10985  cjreb  11013  recj  11014  remullem  11018  imcj  11022  resqrexlemover  11157  resqrexlemcalc1  11161  resqrexlemcalc3  11163  bdtri  11386  subcn2  11457  fsumshftm  11591  fsumsub  11598  geosergap  11652  efmival  11879  cosadd  11883  sinsub  11886  sincossq  11894  cos12dec  11914  moddvds  11945  dvdsadd2b  11986  pythagtriplem4  12409  mulgdirlem  13226  mulgmodid  13234  mulgsubdir  13235  gsumfzconst  13414  dvmptsubcn  14902  cosq34lt1  15026  rpcxpsub  15084  rpabscxpbnd  15114  rprelogbdiv  15130  lgseisenlem1  15227  2sqlem4  15275  apdifflemr  15607
  Copyright terms: Public domain W3C validator