ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  negsubd GIF version

Theorem negsubd 8360
Description: Relationship between subtraction and negative. Theorem I.3 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
negidd.1 (𝜑𝐴 ∈ ℂ)
pncand.2 (𝜑𝐵 ∈ ℂ)
Assertion
Ref Expression
negsubd (𝜑 → (𝐴 + -𝐵) = (𝐴𝐵))

Proof of Theorem negsubd
StepHypRef Expression
1 negidd.1 . 2 (𝜑𝐴 ∈ ℂ)
2 pncand.2 . 2 (𝜑𝐵 ∈ ℂ)
3 negsub 8291 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + -𝐵) = (𝐴𝐵))
41, 2, 3syl2anc 411 1 (𝜑 → (𝐴 + -𝐵) = (𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2167  (class class class)co 5925  cc 7894   + caddc 7899  cmin 8214  -cneg 8215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-setind 4574  ax-resscn 7988  ax-1cn 7989  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-sub 8216  df-neg 8217
This theorem is referenced by:  mulsub  8444  apsub1  8686  divsubdirap  8752  divsubdivap  8772  div2subap  8881  ofnegsub  9006  zaddcllemneg  9382  icoshftf1o  10083  fzosubel  10287  ceiqm1l  10420  modqcyc2  10469  qnegmod  10478  modqsub12d  10490  modsumfzodifsn  10505  expaddzaplem  10691  binom2sub  10762  seq3shft  11020  cjreb  11048  recj  11049  remullem  11053  imcj  11057  resqrexlemover  11192  resqrexlemcalc1  11196  resqrexlemcalc3  11198  bdtri  11422  subcn2  11493  fsumshftm  11627  fsumsub  11634  geosergap  11688  efmival  11915  cosadd  11919  sinsub  11922  sincossq  11930  cos12dec  11950  moddvds  11981  dvdsadd2b  12022  pythagtriplem4  12462  mulgdirlem  13359  mulgmodid  13367  mulgsubdir  13368  gsumfzconst  13547  dvmptsubcn  15043  cosq34lt1  15170  rpcxpsub  15228  rpabscxpbnd  15260  rprelogbdiv  15277  lgseisenlem1  15395  2sqlem4  15443  apdifflemr  15778
  Copyright terms: Public domain W3C validator