| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > negsubd | GIF version | ||
| Description: Relationship between subtraction and negative. Theorem I.3 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| negidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| pncand.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| Ref | Expression |
|---|---|
| negsubd | ⊢ (𝜑 → (𝐴 + -𝐵) = (𝐴 − 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | pncand.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 3 | negsub 8291 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + -𝐵) = (𝐴 − 𝐵)) | |
| 4 | 1, 2, 3 | syl2anc 411 | 1 ⊢ (𝜑 → (𝐴 + -𝐵) = (𝐴 − 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 (class class class)co 5925 ℂcc 7894 + caddc 7899 − cmin 8214 -cneg 8215 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-setind 4574 ax-resscn 7988 ax-1cn 7989 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-distr 8000 ax-i2m1 8001 ax-0id 8004 ax-rnegex 8005 ax-cnre 8007 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-sub 8216 df-neg 8217 |
| This theorem is referenced by: mulsub 8444 apsub1 8686 divsubdirap 8752 divsubdivap 8772 div2subap 8881 ofnegsub 9006 zaddcllemneg 9382 icoshftf1o 10083 fzosubel 10287 ceiqm1l 10420 modqcyc2 10469 qnegmod 10478 modqsub12d 10490 modsumfzodifsn 10505 expaddzaplem 10691 binom2sub 10762 seq3shft 11020 cjreb 11048 recj 11049 remullem 11053 imcj 11057 resqrexlemover 11192 resqrexlemcalc1 11196 resqrexlemcalc3 11198 bdtri 11422 subcn2 11493 fsumshftm 11627 fsumsub 11634 geosergap 11688 efmival 11915 cosadd 11919 sinsub 11922 sincossq 11930 cos12dec 11950 moddvds 11981 dvdsadd2b 12022 pythagtriplem4 12462 mulgdirlem 13359 mulgmodid 13367 mulgsubdir 13368 gsumfzconst 13547 dvmptsubcn 15043 cosq34lt1 15170 rpcxpsub 15228 rpabscxpbnd 15260 rprelogbdiv 15277 lgseisenlem1 15395 2sqlem4 15443 apdifflemr 15778 |
| Copyright terms: Public domain | W3C validator |