Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 4sqlem8 | GIF version |
Description: Lemma for 4sq (not yet proved here) . (Contributed by Mario Carneiro, 15-Jul-2014.) |
Ref | Expression |
---|---|
4sqlem5.2 | ⊢ (𝜑 → 𝐴 ∈ ℤ) |
4sqlem5.3 | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
4sqlem5.4 | ⊢ 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) |
Ref | Expression |
---|---|
4sqlem8 | ⊢ (𝜑 → 𝑀 ∥ ((𝐴↑2) − (𝐵↑2))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4sqlem5.3 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
2 | 1 | nnzd 9333 | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
3 | 4sqlem5.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℤ) | |
4 | 4sqlem5.4 | . . . . 5 ⊢ 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) | |
5 | 3, 1, 4 | 4sqlem5 12334 | . . . 4 ⊢ (𝜑 → (𝐵 ∈ ℤ ∧ ((𝐴 − 𝐵) / 𝑀) ∈ ℤ)) |
6 | 5 | simpld 111 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℤ) |
7 | 3, 6 | zsubcld 9339 | . 2 ⊢ (𝜑 → (𝐴 − 𝐵) ∈ ℤ) |
8 | zsqcl 10546 | . . . 4 ⊢ (𝐴 ∈ ℤ → (𝐴↑2) ∈ ℤ) | |
9 | 3, 8 | syl 14 | . . 3 ⊢ (𝜑 → (𝐴↑2) ∈ ℤ) |
10 | zsqcl 10546 | . . . 4 ⊢ (𝐵 ∈ ℤ → (𝐵↑2) ∈ ℤ) | |
11 | 6, 10 | syl 14 | . . 3 ⊢ (𝜑 → (𝐵↑2) ∈ ℤ) |
12 | 9, 11 | zsubcld 9339 | . 2 ⊢ (𝜑 → ((𝐴↑2) − (𝐵↑2)) ∈ ℤ) |
13 | 5 | simprd 113 | . . 3 ⊢ (𝜑 → ((𝐴 − 𝐵) / 𝑀) ∈ ℤ) |
14 | 1 | nnne0d 8923 | . . . 4 ⊢ (𝜑 → 𝑀 ≠ 0) |
15 | dvdsval2 11752 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ (𝐴 − 𝐵) ∈ ℤ) → (𝑀 ∥ (𝐴 − 𝐵) ↔ ((𝐴 − 𝐵) / 𝑀) ∈ ℤ)) | |
16 | 2, 14, 7, 15 | syl3anc 1233 | . . 3 ⊢ (𝜑 → (𝑀 ∥ (𝐴 − 𝐵) ↔ ((𝐴 − 𝐵) / 𝑀) ∈ ℤ)) |
17 | 13, 16 | mpbird 166 | . 2 ⊢ (𝜑 → 𝑀 ∥ (𝐴 − 𝐵)) |
18 | 3, 6 | zaddcld 9338 | . . . 4 ⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℤ) |
19 | dvdsmul2 11776 | . . . 4 ⊢ (((𝐴 + 𝐵) ∈ ℤ ∧ (𝐴 − 𝐵) ∈ ℤ) → (𝐴 − 𝐵) ∥ ((𝐴 + 𝐵) · (𝐴 − 𝐵))) | |
20 | 18, 7, 19 | syl2anc 409 | . . 3 ⊢ (𝜑 → (𝐴 − 𝐵) ∥ ((𝐴 + 𝐵) · (𝐴 − 𝐵))) |
21 | 3 | zcnd 9335 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
22 | 6 | zcnd 9335 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
23 | subsq 10582 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) − (𝐵↑2)) = ((𝐴 + 𝐵) · (𝐴 − 𝐵))) | |
24 | 21, 22, 23 | syl2anc 409 | . . 3 ⊢ (𝜑 → ((𝐴↑2) − (𝐵↑2)) = ((𝐴 + 𝐵) · (𝐴 − 𝐵))) |
25 | 20, 24 | breqtrrd 4017 | . 2 ⊢ (𝜑 → (𝐴 − 𝐵) ∥ ((𝐴↑2) − (𝐵↑2))) |
26 | 2, 7, 12, 17, 25 | dvdstrd 11792 | 1 ⊢ (𝜑 → 𝑀 ∥ ((𝐴↑2) − (𝐵↑2))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1348 ∈ wcel 2141 ≠ wne 2340 class class class wbr 3989 (class class class)co 5853 ℂcc 7772 0cc0 7774 + caddc 7777 · cmul 7779 − cmin 8090 / cdiv 8589 ℕcn 8878 2c2 8929 ℤcz 9212 mod cmo 10278 ↑cexp 10475 ∥ cdvds 11749 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 ax-pre-mulext 7892 ax-arch 7893 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-po 4281 df-iso 4282 df-iord 4351 df-on 4353 df-ilim 4354 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-frec 6370 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 df-div 8590 df-inn 8879 df-2 8937 df-n0 9136 df-z 9213 df-uz 9488 df-q 9579 df-rp 9611 df-fl 10226 df-mod 10279 df-seqfrec 10402 df-exp 10476 df-dvds 11750 |
This theorem is referenced by: 2sqlem8 13753 |
Copyright terms: Public domain | W3C validator |