ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4sqlem8 GIF version

Theorem 4sqlem8 12523
Description: Lemma for 4sq 12548. (Contributed by Mario Carneiro, 15-Jul-2014.)
Hypotheses
Ref Expression
4sqlem5.2 (𝜑𝐴 ∈ ℤ)
4sqlem5.3 (𝜑𝑀 ∈ ℕ)
4sqlem5.4 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
Assertion
Ref Expression
4sqlem8 (𝜑𝑀 ∥ ((𝐴↑2) − (𝐵↑2)))

Proof of Theorem 4sqlem8
StepHypRef Expression
1 4sqlem5.3 . . 3 (𝜑𝑀 ∈ ℕ)
21nnzd 9438 . 2 (𝜑𝑀 ∈ ℤ)
3 4sqlem5.2 . . 3 (𝜑𝐴 ∈ ℤ)
4 4sqlem5.4 . . . . 5 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
53, 1, 44sqlem5 12520 . . . 4 (𝜑 → (𝐵 ∈ ℤ ∧ ((𝐴𝐵) / 𝑀) ∈ ℤ))
65simpld 112 . . 3 (𝜑𝐵 ∈ ℤ)
73, 6zsubcld 9444 . 2 (𝜑 → (𝐴𝐵) ∈ ℤ)
8 zsqcl 10681 . . . 4 (𝐴 ∈ ℤ → (𝐴↑2) ∈ ℤ)
93, 8syl 14 . . 3 (𝜑 → (𝐴↑2) ∈ ℤ)
10 zsqcl 10681 . . . 4 (𝐵 ∈ ℤ → (𝐵↑2) ∈ ℤ)
116, 10syl 14 . . 3 (𝜑 → (𝐵↑2) ∈ ℤ)
129, 11zsubcld 9444 . 2 (𝜑 → ((𝐴↑2) − (𝐵↑2)) ∈ ℤ)
135simprd 114 . . 3 (𝜑 → ((𝐴𝐵) / 𝑀) ∈ ℤ)
141nnne0d 9027 . . . 4 (𝜑𝑀 ≠ 0)
15 dvdsval2 11933 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ (𝐴𝐵) ∈ ℤ) → (𝑀 ∥ (𝐴𝐵) ↔ ((𝐴𝐵) / 𝑀) ∈ ℤ))
162, 14, 7, 15syl3anc 1249 . . 3 (𝜑 → (𝑀 ∥ (𝐴𝐵) ↔ ((𝐴𝐵) / 𝑀) ∈ ℤ))
1713, 16mpbird 167 . 2 (𝜑𝑀 ∥ (𝐴𝐵))
183, 6zaddcld 9443 . . . 4 (𝜑 → (𝐴 + 𝐵) ∈ ℤ)
19 dvdsmul2 11957 . . . 4 (((𝐴 + 𝐵) ∈ ℤ ∧ (𝐴𝐵) ∈ ℤ) → (𝐴𝐵) ∥ ((𝐴 + 𝐵) · (𝐴𝐵)))
2018, 7, 19syl2anc 411 . . 3 (𝜑 → (𝐴𝐵) ∥ ((𝐴 + 𝐵) · (𝐴𝐵)))
213zcnd 9440 . . . 4 (𝜑𝐴 ∈ ℂ)
226zcnd 9440 . . . 4 (𝜑𝐵 ∈ ℂ)
23 subsq 10717 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) − (𝐵↑2)) = ((𝐴 + 𝐵) · (𝐴𝐵)))
2421, 22, 23syl2anc 411 . . 3 (𝜑 → ((𝐴↑2) − (𝐵↑2)) = ((𝐴 + 𝐵) · (𝐴𝐵)))
2520, 24breqtrrd 4057 . 2 (𝜑 → (𝐴𝐵) ∥ ((𝐴↑2) − (𝐵↑2)))
262, 7, 12, 17, 25dvdstrd 11973 1 (𝜑𝑀 ∥ ((𝐴↑2) − (𝐵↑2)))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1364  wcel 2164  wne 2364   class class class wbr 4029  (class class class)co 5918  cc 7870  0cc0 7872   + caddc 7875   · cmul 7877  cmin 8190   / cdiv 8691  cn 8982  2c2 9033  cz 9317   mod cmo 10393  cexp 10609  cdvds 11930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-fl 10339  df-mod 10394  df-seqfrec 10519  df-exp 10610  df-dvds 11931
This theorem is referenced by:  4sqlem14  12542  2sqlem8  15210
  Copyright terms: Public domain W3C validator