![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 4sqlem8 | GIF version |
Description: Lemma for 4sq 12445. (Contributed by Mario Carneiro, 15-Jul-2014.) |
Ref | Expression |
---|---|
4sqlem5.2 | ⊢ (𝜑 → 𝐴 ∈ ℤ) |
4sqlem5.3 | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
4sqlem5.4 | ⊢ 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) |
Ref | Expression |
---|---|
4sqlem8 | ⊢ (𝜑 → 𝑀 ∥ ((𝐴↑2) − (𝐵↑2))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4sqlem5.3 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
2 | 1 | nnzd 9405 | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
3 | 4sqlem5.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℤ) | |
4 | 4sqlem5.4 | . . . . 5 ⊢ 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) | |
5 | 3, 1, 4 | 4sqlem5 12417 | . . . 4 ⊢ (𝜑 → (𝐵 ∈ ℤ ∧ ((𝐴 − 𝐵) / 𝑀) ∈ ℤ)) |
6 | 5 | simpld 112 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℤ) |
7 | 3, 6 | zsubcld 9411 | . 2 ⊢ (𝜑 → (𝐴 − 𝐵) ∈ ℤ) |
8 | zsqcl 10625 | . . . 4 ⊢ (𝐴 ∈ ℤ → (𝐴↑2) ∈ ℤ) | |
9 | 3, 8 | syl 14 | . . 3 ⊢ (𝜑 → (𝐴↑2) ∈ ℤ) |
10 | zsqcl 10625 | . . . 4 ⊢ (𝐵 ∈ ℤ → (𝐵↑2) ∈ ℤ) | |
11 | 6, 10 | syl 14 | . . 3 ⊢ (𝜑 → (𝐵↑2) ∈ ℤ) |
12 | 9, 11 | zsubcld 9411 | . 2 ⊢ (𝜑 → ((𝐴↑2) − (𝐵↑2)) ∈ ℤ) |
13 | 5 | simprd 114 | . . 3 ⊢ (𝜑 → ((𝐴 − 𝐵) / 𝑀) ∈ ℤ) |
14 | 1 | nnne0d 8995 | . . . 4 ⊢ (𝜑 → 𝑀 ≠ 0) |
15 | dvdsval2 11832 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ (𝐴 − 𝐵) ∈ ℤ) → (𝑀 ∥ (𝐴 − 𝐵) ↔ ((𝐴 − 𝐵) / 𝑀) ∈ ℤ)) | |
16 | 2, 14, 7, 15 | syl3anc 1249 | . . 3 ⊢ (𝜑 → (𝑀 ∥ (𝐴 − 𝐵) ↔ ((𝐴 − 𝐵) / 𝑀) ∈ ℤ)) |
17 | 13, 16 | mpbird 167 | . 2 ⊢ (𝜑 → 𝑀 ∥ (𝐴 − 𝐵)) |
18 | 3, 6 | zaddcld 9410 | . . . 4 ⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℤ) |
19 | dvdsmul2 11856 | . . . 4 ⊢ (((𝐴 + 𝐵) ∈ ℤ ∧ (𝐴 − 𝐵) ∈ ℤ) → (𝐴 − 𝐵) ∥ ((𝐴 + 𝐵) · (𝐴 − 𝐵))) | |
20 | 18, 7, 19 | syl2anc 411 | . . 3 ⊢ (𝜑 → (𝐴 − 𝐵) ∥ ((𝐴 + 𝐵) · (𝐴 − 𝐵))) |
21 | 3 | zcnd 9407 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
22 | 6 | zcnd 9407 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
23 | subsq 10661 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) − (𝐵↑2)) = ((𝐴 + 𝐵) · (𝐴 − 𝐵))) | |
24 | 21, 22, 23 | syl2anc 411 | . . 3 ⊢ (𝜑 → ((𝐴↑2) − (𝐵↑2)) = ((𝐴 + 𝐵) · (𝐴 − 𝐵))) |
25 | 20, 24 | breqtrrd 4046 | . 2 ⊢ (𝜑 → (𝐴 − 𝐵) ∥ ((𝐴↑2) − (𝐵↑2))) |
26 | 2, 7, 12, 17, 25 | dvdstrd 11872 | 1 ⊢ (𝜑 → 𝑀 ∥ ((𝐴↑2) − (𝐵↑2))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ∈ wcel 2160 ≠ wne 2360 class class class wbr 4018 (class class class)co 5897 ℂcc 7840 0cc0 7842 + caddc 7845 · cmul 7847 − cmin 8159 / cdiv 8660 ℕcn 8950 2c2 9001 ℤcz 9284 mod cmo 10355 ↑cexp 10553 ∥ cdvds 11829 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-nul 4144 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-setind 4554 ax-iinf 4605 ax-cnex 7933 ax-resscn 7934 ax-1cn 7935 ax-1re 7936 ax-icn 7937 ax-addcl 7938 ax-addrcl 7939 ax-mulcl 7940 ax-mulrcl 7941 ax-addcom 7942 ax-mulcom 7943 ax-addass 7944 ax-mulass 7945 ax-distr 7946 ax-i2m1 7947 ax-0lt1 7948 ax-1rid 7949 ax-0id 7950 ax-rnegex 7951 ax-precex 7952 ax-cnre 7953 ax-pre-ltirr 7954 ax-pre-ltwlin 7955 ax-pre-lttrn 7956 ax-pre-apti 7957 ax-pre-ltadd 7958 ax-pre-mulgt0 7959 ax-pre-mulext 7960 ax-arch 7961 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-if 3550 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-tr 4117 df-id 4311 df-po 4314 df-iso 4315 df-iord 4384 df-on 4386 df-ilim 4387 df-suc 4389 df-iom 4608 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-ima 4657 df-iota 5196 df-fun 5237 df-fn 5238 df-f 5239 df-f1 5240 df-fo 5241 df-f1o 5242 df-fv 5243 df-riota 5852 df-ov 5900 df-oprab 5901 df-mpo 5902 df-1st 6166 df-2nd 6167 df-recs 6331 df-frec 6417 df-pnf 8025 df-mnf 8026 df-xr 8027 df-ltxr 8028 df-le 8029 df-sub 8161 df-neg 8162 df-reap 8563 df-ap 8570 df-div 8661 df-inn 8951 df-2 9009 df-n0 9208 df-z 9285 df-uz 9560 df-q 9652 df-rp 9686 df-fl 10303 df-mod 10356 df-seqfrec 10479 df-exp 10554 df-dvds 11830 |
This theorem is referenced by: 4sqlem14 12439 2sqlem8 14948 |
Copyright terms: Public domain | W3C validator |