ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4sqlem8 GIF version

Theorem 4sqlem8 12420
Description: Lemma for 4sq 12445. (Contributed by Mario Carneiro, 15-Jul-2014.)
Hypotheses
Ref Expression
4sqlem5.2 (𝜑𝐴 ∈ ℤ)
4sqlem5.3 (𝜑𝑀 ∈ ℕ)
4sqlem5.4 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
Assertion
Ref Expression
4sqlem8 (𝜑𝑀 ∥ ((𝐴↑2) − (𝐵↑2)))

Proof of Theorem 4sqlem8
StepHypRef Expression
1 4sqlem5.3 . . 3 (𝜑𝑀 ∈ ℕ)
21nnzd 9405 . 2 (𝜑𝑀 ∈ ℤ)
3 4sqlem5.2 . . 3 (𝜑𝐴 ∈ ℤ)
4 4sqlem5.4 . . . . 5 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
53, 1, 44sqlem5 12417 . . . 4 (𝜑 → (𝐵 ∈ ℤ ∧ ((𝐴𝐵) / 𝑀) ∈ ℤ))
65simpld 112 . . 3 (𝜑𝐵 ∈ ℤ)
73, 6zsubcld 9411 . 2 (𝜑 → (𝐴𝐵) ∈ ℤ)
8 zsqcl 10625 . . . 4 (𝐴 ∈ ℤ → (𝐴↑2) ∈ ℤ)
93, 8syl 14 . . 3 (𝜑 → (𝐴↑2) ∈ ℤ)
10 zsqcl 10625 . . . 4 (𝐵 ∈ ℤ → (𝐵↑2) ∈ ℤ)
116, 10syl 14 . . 3 (𝜑 → (𝐵↑2) ∈ ℤ)
129, 11zsubcld 9411 . 2 (𝜑 → ((𝐴↑2) − (𝐵↑2)) ∈ ℤ)
135simprd 114 . . 3 (𝜑 → ((𝐴𝐵) / 𝑀) ∈ ℤ)
141nnne0d 8995 . . . 4 (𝜑𝑀 ≠ 0)
15 dvdsval2 11832 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ (𝐴𝐵) ∈ ℤ) → (𝑀 ∥ (𝐴𝐵) ↔ ((𝐴𝐵) / 𝑀) ∈ ℤ))
162, 14, 7, 15syl3anc 1249 . . 3 (𝜑 → (𝑀 ∥ (𝐴𝐵) ↔ ((𝐴𝐵) / 𝑀) ∈ ℤ))
1713, 16mpbird 167 . 2 (𝜑𝑀 ∥ (𝐴𝐵))
183, 6zaddcld 9410 . . . 4 (𝜑 → (𝐴 + 𝐵) ∈ ℤ)
19 dvdsmul2 11856 . . . 4 (((𝐴 + 𝐵) ∈ ℤ ∧ (𝐴𝐵) ∈ ℤ) → (𝐴𝐵) ∥ ((𝐴 + 𝐵) · (𝐴𝐵)))
2018, 7, 19syl2anc 411 . . 3 (𝜑 → (𝐴𝐵) ∥ ((𝐴 + 𝐵) · (𝐴𝐵)))
213zcnd 9407 . . . 4 (𝜑𝐴 ∈ ℂ)
226zcnd 9407 . . . 4 (𝜑𝐵 ∈ ℂ)
23 subsq 10661 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) − (𝐵↑2)) = ((𝐴 + 𝐵) · (𝐴𝐵)))
2421, 22, 23syl2anc 411 . . 3 (𝜑 → ((𝐴↑2) − (𝐵↑2)) = ((𝐴 + 𝐵) · (𝐴𝐵)))
2520, 24breqtrrd 4046 . 2 (𝜑 → (𝐴𝐵) ∥ ((𝐴↑2) − (𝐵↑2)))
262, 7, 12, 17, 25dvdstrd 11872 1 (𝜑𝑀 ∥ ((𝐴↑2) − (𝐵↑2)))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1364  wcel 2160  wne 2360   class class class wbr 4018  (class class class)co 5897  cc 7840  0cc0 7842   + caddc 7845   · cmul 7847  cmin 8159   / cdiv 8660  cn 8950  2c2 9001  cz 9284   mod cmo 10355  cexp 10553  cdvds 11829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605  ax-cnex 7933  ax-resscn 7934  ax-1cn 7935  ax-1re 7936  ax-icn 7937  ax-addcl 7938  ax-addrcl 7939  ax-mulcl 7940  ax-mulrcl 7941  ax-addcom 7942  ax-mulcom 7943  ax-addass 7944  ax-mulass 7945  ax-distr 7946  ax-i2m1 7947  ax-0lt1 7948  ax-1rid 7949  ax-0id 7950  ax-rnegex 7951  ax-precex 7952  ax-cnre 7953  ax-pre-ltirr 7954  ax-pre-ltwlin 7955  ax-pre-lttrn 7956  ax-pre-apti 7957  ax-pre-ltadd 7958  ax-pre-mulgt0 7959  ax-pre-mulext 7960  ax-arch 7961
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-po 4314  df-iso 4315  df-iord 4384  df-on 4386  df-ilim 4387  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-riota 5852  df-ov 5900  df-oprab 5901  df-mpo 5902  df-1st 6166  df-2nd 6167  df-recs 6331  df-frec 6417  df-pnf 8025  df-mnf 8026  df-xr 8027  df-ltxr 8028  df-le 8029  df-sub 8161  df-neg 8162  df-reap 8563  df-ap 8570  df-div 8661  df-inn 8951  df-2 9009  df-n0 9208  df-z 9285  df-uz 9560  df-q 9652  df-rp 9686  df-fl 10303  df-mod 10356  df-seqfrec 10479  df-exp 10554  df-dvds 11830
This theorem is referenced by:  4sqlem14  12439  2sqlem8  14948
  Copyright terms: Public domain W3C validator