| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fznn0sub2 | GIF version | ||
| Description: Subtraction closure for a member of a finite set of sequential nonnegative integers. (Contributed by NM, 26-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| fznn0sub2 | ⊢ (𝐾 ∈ (0...𝑁) → (𝑁 − 𝐾) ∈ (0...𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzle1 10184 | . . 3 ⊢ (𝐾 ∈ (0...𝑁) → 0 ≤ 𝐾) | |
| 2 | elfzel2 10180 | . . . 4 ⊢ (𝐾 ∈ (0...𝑁) → 𝑁 ∈ ℤ) | |
| 3 | elfzelz 10182 | . . . 4 ⊢ (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℤ) | |
| 4 | zre 9411 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
| 5 | zre 9411 | . . . . 5 ⊢ (𝐾 ∈ ℤ → 𝐾 ∈ ℝ) | |
| 6 | subge02 8586 | . . . . 5 ⊢ ((𝑁 ∈ ℝ ∧ 𝐾 ∈ ℝ) → (0 ≤ 𝐾 ↔ (𝑁 − 𝐾) ≤ 𝑁)) | |
| 7 | 4, 5, 6 | syl2an 289 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (0 ≤ 𝐾 ↔ (𝑁 − 𝐾) ≤ 𝑁)) |
| 8 | 2, 3, 7 | syl2anc 411 | . . 3 ⊢ (𝐾 ∈ (0...𝑁) → (0 ≤ 𝐾 ↔ (𝑁 − 𝐾) ≤ 𝑁)) |
| 9 | 1, 8 | mpbid 147 | . 2 ⊢ (𝐾 ∈ (0...𝑁) → (𝑁 − 𝐾) ≤ 𝑁) |
| 10 | fznn0sub 10214 | . . . 4 ⊢ (𝐾 ∈ (0...𝑁) → (𝑁 − 𝐾) ∈ ℕ0) | |
| 11 | nn0uz 9718 | . . . 4 ⊢ ℕ0 = (ℤ≥‘0) | |
| 12 | 10, 11 | eleqtrdi 2300 | . . 3 ⊢ (𝐾 ∈ (0...𝑁) → (𝑁 − 𝐾) ∈ (ℤ≥‘0)) |
| 13 | elfz5 10174 | . . 3 ⊢ (((𝑁 − 𝐾) ∈ (ℤ≥‘0) ∧ 𝑁 ∈ ℤ) → ((𝑁 − 𝐾) ∈ (0...𝑁) ↔ (𝑁 − 𝐾) ≤ 𝑁)) | |
| 14 | 12, 2, 13 | syl2anc 411 | . 2 ⊢ (𝐾 ∈ (0...𝑁) → ((𝑁 − 𝐾) ∈ (0...𝑁) ↔ (𝑁 − 𝐾) ≤ 𝑁)) |
| 15 | 9, 14 | mpbird 167 | 1 ⊢ (𝐾 ∈ (0...𝑁) → (𝑁 − 𝐾) ∈ (0...𝑁)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∈ wcel 2178 class class class wbr 4059 ‘cfv 5290 (class class class)co 5967 ℝcr 7959 0cc0 7960 ≤ cle 8143 − cmin 8278 ℕ0cn0 9330 ℤcz 9407 ℤ≥cuz 9683 ...cfz 10165 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-0id 8068 ax-rnegex 8069 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-inn 9072 df-n0 9331 df-z 9408 df-uz 9684 df-fz 10166 |
| This theorem is referenced by: uzsubfz0 10286 bccmpl 10936 pfxlswccat 11204 fisum0diag2 11873 mertenslemi1 11961 |
| Copyright terms: Public domain | W3C validator |