Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fznn0sub2 | GIF version |
Description: Subtraction closure for a member of a finite set of sequential nonnegative integers. (Contributed by NM, 26-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
fznn0sub2 | ⊢ (𝐾 ∈ (0...𝑁) → (𝑁 − 𝐾) ∈ (0...𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzle1 9997 | . . 3 ⊢ (𝐾 ∈ (0...𝑁) → 0 ≤ 𝐾) | |
2 | elfzel2 9993 | . . . 4 ⊢ (𝐾 ∈ (0...𝑁) → 𝑁 ∈ ℤ) | |
3 | elfzelz 9995 | . . . 4 ⊢ (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℤ) | |
4 | zre 9230 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
5 | zre 9230 | . . . . 5 ⊢ (𝐾 ∈ ℤ → 𝐾 ∈ ℝ) | |
6 | subge02 8409 | . . . . 5 ⊢ ((𝑁 ∈ ℝ ∧ 𝐾 ∈ ℝ) → (0 ≤ 𝐾 ↔ (𝑁 − 𝐾) ≤ 𝑁)) | |
7 | 4, 5, 6 | syl2an 289 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (0 ≤ 𝐾 ↔ (𝑁 − 𝐾) ≤ 𝑁)) |
8 | 2, 3, 7 | syl2anc 411 | . . 3 ⊢ (𝐾 ∈ (0...𝑁) → (0 ≤ 𝐾 ↔ (𝑁 − 𝐾) ≤ 𝑁)) |
9 | 1, 8 | mpbid 147 | . 2 ⊢ (𝐾 ∈ (0...𝑁) → (𝑁 − 𝐾) ≤ 𝑁) |
10 | fznn0sub 10027 | . . . 4 ⊢ (𝐾 ∈ (0...𝑁) → (𝑁 − 𝐾) ∈ ℕ0) | |
11 | nn0uz 9535 | . . . 4 ⊢ ℕ0 = (ℤ≥‘0) | |
12 | 10, 11 | eleqtrdi 2268 | . . 3 ⊢ (𝐾 ∈ (0...𝑁) → (𝑁 − 𝐾) ∈ (ℤ≥‘0)) |
13 | elfz5 9987 | . . 3 ⊢ (((𝑁 − 𝐾) ∈ (ℤ≥‘0) ∧ 𝑁 ∈ ℤ) → ((𝑁 − 𝐾) ∈ (0...𝑁) ↔ (𝑁 − 𝐾) ≤ 𝑁)) | |
14 | 12, 2, 13 | syl2anc 411 | . 2 ⊢ (𝐾 ∈ (0...𝑁) → ((𝑁 − 𝐾) ∈ (0...𝑁) ↔ (𝑁 − 𝐾) ≤ 𝑁)) |
15 | 9, 14 | mpbird 167 | 1 ⊢ (𝐾 ∈ (0...𝑁) → (𝑁 − 𝐾) ∈ (0...𝑁)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∈ wcel 2146 class class class wbr 3998 ‘cfv 5208 (class class class)co 5865 ℝcr 7785 0cc0 7786 ≤ cle 7967 − cmin 8102 ℕ0cn0 9149 ℤcz 9226 ℤ≥cuz 9501 ...cfz 9979 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 ax-1cn 7879 ax-1re 7880 ax-icn 7881 ax-addcl 7882 ax-addrcl 7883 ax-mulcl 7884 ax-addcom 7886 ax-addass 7888 ax-distr 7890 ax-i2m1 7891 ax-0lt1 7892 ax-0id 7894 ax-rnegex 7895 ax-cnre 7897 ax-pre-ltirr 7898 ax-pre-ltwlin 7899 ax-pre-lttrn 7900 ax-pre-ltadd 7902 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-reu 2460 df-rab 2462 df-v 2737 df-sbc 2961 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-fv 5216 df-riota 5821 df-ov 5868 df-oprab 5869 df-mpo 5870 df-pnf 7968 df-mnf 7969 df-xr 7970 df-ltxr 7971 df-le 7972 df-sub 8104 df-neg 8105 df-inn 8893 df-n0 9150 df-z 9227 df-uz 9502 df-fz 9980 |
This theorem is referenced by: uzsubfz0 10099 bccmpl 10702 fisum0diag2 11423 mertenslemi1 11511 |
Copyright terms: Public domain | W3C validator |