Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cncongrprm | GIF version |
Description: Corollary 2 of Cancellability of Congruences: Two products with a common factor are congruent modulo a prime number not dividing the common factor iff the other factors are congruent modulo the prime number. (Contributed by AV, 13-Jul-2021.) |
Ref | Expression |
---|---|
cncongrprm | ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ ¬ 𝑃 ∥ 𝐶)) → (((𝐴 · 𝐶) mod 𝑃) = ((𝐵 · 𝐶) mod 𝑃) ↔ (𝐴 mod 𝑃) = (𝐵 mod 𝑃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prmnn 11959 | . . . 4 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
2 | 1 | ad2antrl 482 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ ¬ 𝑃 ∥ 𝐶)) → 𝑃 ∈ ℕ) |
3 | coprm 11990 | . . . . . . . . 9 ⊢ ((𝑃 ∈ ℙ ∧ 𝐶 ∈ ℤ) → (¬ 𝑃 ∥ 𝐶 ↔ (𝑃 gcd 𝐶) = 1)) | |
4 | prmz 11960 | . . . . . . . . . . 11 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℤ) | |
5 | gcdcom 11829 | . . . . . . . . . . 11 ⊢ ((𝑃 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝑃 gcd 𝐶) = (𝐶 gcd 𝑃)) | |
6 | 4, 5 | sylan 281 | . . . . . . . . . 10 ⊢ ((𝑃 ∈ ℙ ∧ 𝐶 ∈ ℤ) → (𝑃 gcd 𝐶) = (𝐶 gcd 𝑃)) |
7 | 6 | eqeq1d 2163 | . . . . . . . . 9 ⊢ ((𝑃 ∈ ℙ ∧ 𝐶 ∈ ℤ) → ((𝑃 gcd 𝐶) = 1 ↔ (𝐶 gcd 𝑃) = 1)) |
8 | 3, 7 | bitrd 187 | . . . . . . . 8 ⊢ ((𝑃 ∈ ℙ ∧ 𝐶 ∈ ℤ) → (¬ 𝑃 ∥ 𝐶 ↔ (𝐶 gcd 𝑃) = 1)) |
9 | 8 | ancoms 266 | . . . . . . 7 ⊢ ((𝐶 ∈ ℤ ∧ 𝑃 ∈ ℙ) → (¬ 𝑃 ∥ 𝐶 ↔ (𝐶 gcd 𝑃) = 1)) |
10 | 9 | biimpd 143 | . . . . . 6 ⊢ ((𝐶 ∈ ℤ ∧ 𝑃 ∈ ℙ) → (¬ 𝑃 ∥ 𝐶 → (𝐶 gcd 𝑃) = 1)) |
11 | 10 | expimpd 361 | . . . . 5 ⊢ (𝐶 ∈ ℤ → ((𝑃 ∈ ℙ ∧ ¬ 𝑃 ∥ 𝐶) → (𝐶 gcd 𝑃) = 1)) |
12 | 11 | 3ad2ant3 1005 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝑃 ∈ ℙ ∧ ¬ 𝑃 ∥ 𝐶) → (𝐶 gcd 𝑃) = 1)) |
13 | 12 | imp 123 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ ¬ 𝑃 ∥ 𝐶)) → (𝐶 gcd 𝑃) = 1) |
14 | 2, 13 | jca 304 | . 2 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ ¬ 𝑃 ∥ 𝐶)) → (𝑃 ∈ ℕ ∧ (𝐶 gcd 𝑃) = 1)) |
15 | cncongrcoprm 11955 | . 2 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑃 ∈ ℕ ∧ (𝐶 gcd 𝑃) = 1)) → (((𝐴 · 𝐶) mod 𝑃) = ((𝐵 · 𝐶) mod 𝑃) ↔ (𝐴 mod 𝑃) = (𝐵 mod 𝑃))) | |
16 | 14, 15 | syldan 280 | 1 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ ¬ 𝑃 ∥ 𝐶)) → (((𝐴 · 𝐶) mod 𝑃) = ((𝐵 · 𝐶) mod 𝑃) ↔ (𝐴 mod 𝑃) = (𝐵 mod 𝑃))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 ∧ w3a 963 = wceq 1332 ∈ wcel 2125 class class class wbr 3961 (class class class)co 5814 1c1 7712 · cmul 7716 ℕcn 8812 ℤcz 9146 mod cmo 10199 ∥ cdvds 11660 gcd cgcd 11802 ℙcprime 11956 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-13 2127 ax-14 2128 ax-ext 2136 ax-coll 4075 ax-sep 4078 ax-nul 4086 ax-pow 4130 ax-pr 4164 ax-un 4388 ax-setind 4490 ax-iinf 4541 ax-cnex 7802 ax-resscn 7803 ax-1cn 7804 ax-1re 7805 ax-icn 7806 ax-addcl 7807 ax-addrcl 7808 ax-mulcl 7809 ax-mulrcl 7810 ax-addcom 7811 ax-mulcom 7812 ax-addass 7813 ax-mulass 7814 ax-distr 7815 ax-i2m1 7816 ax-0lt1 7817 ax-1rid 7818 ax-0id 7819 ax-rnegex 7820 ax-precex 7821 ax-cnre 7822 ax-pre-ltirr 7823 ax-pre-ltwlin 7824 ax-pre-lttrn 7825 ax-pre-apti 7826 ax-pre-ltadd 7827 ax-pre-mulgt0 7828 ax-pre-mulext 7829 ax-arch 7830 ax-caucvg 7831 |
This theorem depends on definitions: df-bi 116 df-stab 817 df-dc 821 df-3or 964 df-3an 965 df-tru 1335 df-fal 1338 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ne 2325 df-nel 2420 df-ral 2437 df-rex 2438 df-reu 2439 df-rmo 2440 df-rab 2441 df-v 2711 df-sbc 2934 df-csb 3028 df-dif 3100 df-un 3102 df-in 3104 df-ss 3111 df-nul 3391 df-if 3502 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-int 3804 df-iun 3847 df-br 3962 df-opab 4022 df-mpt 4023 df-tr 4059 df-id 4248 df-po 4251 df-iso 4252 df-iord 4321 df-on 4323 df-ilim 4324 df-suc 4326 df-iom 4544 df-xp 4585 df-rel 4586 df-cnv 4587 df-co 4588 df-dm 4589 df-rn 4590 df-res 4591 df-ima 4592 df-iota 5128 df-fun 5165 df-fn 5166 df-f 5167 df-f1 5168 df-fo 5169 df-f1o 5170 df-fv 5171 df-riota 5770 df-ov 5817 df-oprab 5818 df-mpo 5819 df-1st 6078 df-2nd 6079 df-recs 6242 df-frec 6328 df-1o 6353 df-2o 6354 df-er 6469 df-en 6675 df-sup 6916 df-pnf 7893 df-mnf 7894 df-xr 7895 df-ltxr 7896 df-le 7897 df-sub 8027 df-neg 8028 df-reap 8429 df-ap 8436 df-div 8525 df-inn 8813 df-2 8871 df-3 8872 df-4 8873 df-n0 9070 df-z 9147 df-uz 9419 df-q 9507 df-rp 9539 df-fz 9891 df-fzo 10020 df-fl 10147 df-mod 10200 df-seqfrec 10323 df-exp 10397 df-cj 10719 df-re 10720 df-im 10721 df-rsqrt 10875 df-abs 10876 df-dvds 11661 df-gcd 11803 df-prm 11957 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |