| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cncongrprm | GIF version | ||
| Description: Corollary 2 of Cancellability of Congruences: Two products with a common factor are congruent modulo a prime number not dividing the common factor iff the other factors are congruent modulo the prime number. (Contributed by AV, 13-Jul-2021.) |
| Ref | Expression |
|---|---|
| cncongrprm | ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ ¬ 𝑃 ∥ 𝐶)) → (((𝐴 · 𝐶) mod 𝑃) = ((𝐵 · 𝐶) mod 𝑃) ↔ (𝐴 mod 𝑃) = (𝐵 mod 𝑃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prmnn 12351 | . . . 4 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
| 2 | 1 | ad2antrl 490 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ ¬ 𝑃 ∥ 𝐶)) → 𝑃 ∈ ℕ) |
| 3 | coprm 12385 | . . . . . . . . 9 ⊢ ((𝑃 ∈ ℙ ∧ 𝐶 ∈ ℤ) → (¬ 𝑃 ∥ 𝐶 ↔ (𝑃 gcd 𝐶) = 1)) | |
| 4 | prmz 12352 | . . . . . . . . . . 11 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℤ) | |
| 5 | gcdcom 12213 | . . . . . . . . . . 11 ⊢ ((𝑃 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝑃 gcd 𝐶) = (𝐶 gcd 𝑃)) | |
| 6 | 4, 5 | sylan 283 | . . . . . . . . . 10 ⊢ ((𝑃 ∈ ℙ ∧ 𝐶 ∈ ℤ) → (𝑃 gcd 𝐶) = (𝐶 gcd 𝑃)) |
| 7 | 6 | eqeq1d 2213 | . . . . . . . . 9 ⊢ ((𝑃 ∈ ℙ ∧ 𝐶 ∈ ℤ) → ((𝑃 gcd 𝐶) = 1 ↔ (𝐶 gcd 𝑃) = 1)) |
| 8 | 3, 7 | bitrd 188 | . . . . . . . 8 ⊢ ((𝑃 ∈ ℙ ∧ 𝐶 ∈ ℤ) → (¬ 𝑃 ∥ 𝐶 ↔ (𝐶 gcd 𝑃) = 1)) |
| 9 | 8 | ancoms 268 | . . . . . . 7 ⊢ ((𝐶 ∈ ℤ ∧ 𝑃 ∈ ℙ) → (¬ 𝑃 ∥ 𝐶 ↔ (𝐶 gcd 𝑃) = 1)) |
| 10 | 9 | biimpd 144 | . . . . . 6 ⊢ ((𝐶 ∈ ℤ ∧ 𝑃 ∈ ℙ) → (¬ 𝑃 ∥ 𝐶 → (𝐶 gcd 𝑃) = 1)) |
| 11 | 10 | expimpd 363 | . . . . 5 ⊢ (𝐶 ∈ ℤ → ((𝑃 ∈ ℙ ∧ ¬ 𝑃 ∥ 𝐶) → (𝐶 gcd 𝑃) = 1)) |
| 12 | 11 | 3ad2ant3 1022 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝑃 ∈ ℙ ∧ ¬ 𝑃 ∥ 𝐶) → (𝐶 gcd 𝑃) = 1)) |
| 13 | 12 | imp 124 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ ¬ 𝑃 ∥ 𝐶)) → (𝐶 gcd 𝑃) = 1) |
| 14 | 2, 13 | jca 306 | . 2 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ ¬ 𝑃 ∥ 𝐶)) → (𝑃 ∈ ℕ ∧ (𝐶 gcd 𝑃) = 1)) |
| 15 | cncongrcoprm 12347 | . 2 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑃 ∈ ℕ ∧ (𝐶 gcd 𝑃) = 1)) → (((𝐴 · 𝐶) mod 𝑃) = ((𝐵 · 𝐶) mod 𝑃) ↔ (𝐴 mod 𝑃) = (𝐵 mod 𝑃))) | |
| 16 | 14, 15 | syldan 282 | 1 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ ¬ 𝑃 ∥ 𝐶)) → (((𝐴 · 𝐶) mod 𝑃) = ((𝐵 · 𝐶) mod 𝑃) ↔ (𝐴 mod 𝑃) = (𝐵 mod 𝑃))) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 = wceq 1372 ∈ wcel 2175 class class class wbr 4043 (class class class)co 5934 1c1 7908 · cmul 7912 ℕcn 9018 ℤcz 9354 mod cmo 10448 ∥ cdvds 12017 gcd cgcd 12193 ℙcprime 12348 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-setind 4583 ax-iinf 4634 ax-cnex 7998 ax-resscn 7999 ax-1cn 8000 ax-1re 8001 ax-icn 8002 ax-addcl 8003 ax-addrcl 8004 ax-mulcl 8005 ax-mulrcl 8006 ax-addcom 8007 ax-mulcom 8008 ax-addass 8009 ax-mulass 8010 ax-distr 8011 ax-i2m1 8012 ax-0lt1 8013 ax-1rid 8014 ax-0id 8015 ax-rnegex 8016 ax-precex 8017 ax-cnre 8018 ax-pre-ltirr 8019 ax-pre-ltwlin 8020 ax-pre-lttrn 8021 ax-pre-apti 8022 ax-pre-ltadd 8023 ax-pre-mulgt0 8024 ax-pre-mulext 8025 ax-arch 8026 ax-caucvg 8027 |
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-if 3571 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4338 df-po 4341 df-iso 4342 df-iord 4411 df-on 4413 df-ilim 4414 df-suc 4416 df-iom 4637 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-res 4685 df-ima 4686 df-iota 5229 df-fun 5270 df-fn 5271 df-f 5272 df-f1 5273 df-fo 5274 df-f1o 5275 df-fv 5276 df-riota 5889 df-ov 5937 df-oprab 5938 df-mpo 5939 df-1st 6216 df-2nd 6217 df-recs 6381 df-frec 6467 df-1o 6492 df-2o 6493 df-er 6610 df-en 6818 df-sup 7068 df-pnf 8091 df-mnf 8092 df-xr 8093 df-ltxr 8094 df-le 8095 df-sub 8227 df-neg 8228 df-reap 8630 df-ap 8637 df-div 8728 df-inn 9019 df-2 9077 df-3 9078 df-4 9079 df-n0 9278 df-z 9355 df-uz 9631 df-q 9723 df-rp 9758 df-fz 10113 df-fzo 10247 df-fl 10394 df-mod 10449 df-seqfrec 10574 df-exp 10665 df-cj 11072 df-re 11073 df-im 11074 df-rsqrt 11228 df-abs 11229 df-dvds 12018 df-gcd 12194 df-prm 12349 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |