ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zsubcl GIF version

Theorem zsubcl 9232
Description: Closure of subtraction of integers. (Contributed by NM, 11-May-2004.)
Assertion
Ref Expression
zsubcl ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁) ∈ ℤ)

Proof of Theorem zsubcl
StepHypRef Expression
1 zcn 9196 . . 3 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
2 zcn 9196 . . 3 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
3 negsub 8146 . . 3 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝑀 + -𝑁) = (𝑀𝑁))
41, 2, 3syl2an 287 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + -𝑁) = (𝑀𝑁))
5 znegcl 9222 . . 3 (𝑁 ∈ ℤ → -𝑁 ∈ ℤ)
6 zaddcl 9231 . . 3 ((𝑀 ∈ ℤ ∧ -𝑁 ∈ ℤ) → (𝑀 + -𝑁) ∈ ℤ)
75, 6sylan2 284 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + -𝑁) ∈ ℤ)
84, 7eqeltrrd 2244 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁) ∈ ℤ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wcel 2136  (class class class)co 5842  cc 7751   + caddc 7756  cmin 8069  -cneg 8070  cz 9191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-inn 8858  df-n0 9115  df-z 9192
This theorem is referenced by:  ztri3or  9234  zrevaddcl  9241  znnsub  9242  nzadd  9243  znn0sub  9256  zneo  9292  zsubcld  9318  eluzsubi  9493  fzen  9978  uzsubsubfz  9982  fzrev  10019  fzrev2  10020  fzrevral2  10041  fzshftral  10043  fz0fzdiffz0  10065  difelfzle  10069  difelfznle  10070  elfzomelpfzo  10166  zmodcl  10279  frecfzen2  10362  facndiv  10652  bccmpl  10667  bcpasc  10679  hashfz  10734  moddvds  11739  modmulconst  11763  dvds2sub  11766  dvdssub2  11775  dvdssubr  11779  fzocongeq  11796  odd2np1  11810  omoe  11833  omeo  11835  divalgb  11862  divalgmod  11864  ndvdsadd  11868  nn0seqcvgd  11973  congr  12032  cncongr1  12035  cncongr2  12036  prmdiv  12167  prmdiveq  12168  pythagtriplem4  12200  pythagtriplem8  12204  difsqpwdvds  12269
  Copyright terms: Public domain W3C validator