| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > zsubcl | GIF version | ||
| Description: Closure of subtraction of integers. (Contributed by NM, 11-May-2004.) |
| Ref | Expression |
|---|---|
| zsubcl | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 − 𝑁) ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zcn 9447 | . . 3 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℂ) | |
| 2 | zcn 9447 | . . 3 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
| 3 | negsub 8390 | . . 3 ⊢ ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝑀 + -𝑁) = (𝑀 − 𝑁)) | |
| 4 | 1, 2, 3 | syl2an 289 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + -𝑁) = (𝑀 − 𝑁)) |
| 5 | znegcl 9473 | . . 3 ⊢ (𝑁 ∈ ℤ → -𝑁 ∈ ℤ) | |
| 6 | zaddcl 9482 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ -𝑁 ∈ ℤ) → (𝑀 + -𝑁) ∈ ℤ) | |
| 7 | 5, 6 | sylan2 286 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + -𝑁) ∈ ℤ) |
| 8 | 4, 7 | eqeltrrd 2307 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 − 𝑁) ∈ ℤ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 (class class class)co 6000 ℂcc 7993 + caddc 7998 − cmin 8313 -cneg 8314 ℤcz 9442 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-0id 8103 ax-rnegex 8104 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-iota 5277 df-fun 5319 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-inn 9107 df-n0 9366 df-z 9443 |
| This theorem is referenced by: ztri3or 9485 zrevaddcl 9493 znnsub 9494 nzadd 9495 znn0sub 9508 zneo 9544 zsubcld 9570 eluzsubi 9746 fzen 10235 uzsubsubfz 10239 fzrev 10276 fzrev2 10277 fzrevral2 10298 fzshftral 10300 fz0fzdiffz0 10322 difelfzle 10326 difelfznle 10327 fzo0n 10360 elfzomelpfzo 10432 zmodcl 10561 frecfzen2 10644 facndiv 10956 bccmpl 10971 bcpasc 10983 hashfz 11038 swrdspsleq 11194 pfxccatin12lem4 11253 pfxccatin12lem2a 11254 pfxccatin12lem1 11255 pfxccatin12lem2 11258 swrdccat 11262 moddvds 12305 modmulconst 12329 dvds2sub 12332 dvdssub2 12341 dvdssubr 12345 fzocongeq 12364 3dvds 12370 odd2np1 12379 omoe 12402 omeo 12404 divalgb 12431 divalgmod 12433 ndvdsadd 12437 nn0seqcvgd 12558 congr 12617 cncongr1 12620 cncongr2 12621 prmdiv 12752 prmdiveq 12753 pythagtriplem4 12786 pythagtriplem8 12790 difsqpwdvds 12856 gausslemma2dlem6 15740 lgsquadlem1 15750 |
| Copyright terms: Public domain | W3C validator |