ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zsubcl GIF version

Theorem zsubcl 9296
Description: Closure of subtraction of integers. (Contributed by NM, 11-May-2004.)
Assertion
Ref Expression
zsubcl ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁) ∈ ℤ)

Proof of Theorem zsubcl
StepHypRef Expression
1 zcn 9260 . . 3 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
2 zcn 9260 . . 3 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
3 negsub 8207 . . 3 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝑀 + -𝑁) = (𝑀𝑁))
41, 2, 3syl2an 289 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + -𝑁) = (𝑀𝑁))
5 znegcl 9286 . . 3 (𝑁 ∈ ℤ → -𝑁 ∈ ℤ)
6 zaddcl 9295 . . 3 ((𝑀 ∈ ℤ ∧ -𝑁 ∈ ℤ) → (𝑀 + -𝑁) ∈ ℤ)
75, 6sylan2 286 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + -𝑁) ∈ ℤ)
84, 7eqeltrrd 2255 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁) ∈ ℤ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2148  (class class class)co 5877  cc 7811   + caddc 7816  cmin 8130  -cneg 8131  cz 9255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-0id 7921  ax-rnegex 7922  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-ltadd 7929
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-inn 8922  df-n0 9179  df-z 9256
This theorem is referenced by:  ztri3or  9298  zrevaddcl  9305  znnsub  9306  nzadd  9307  znn0sub  9320  zneo  9356  zsubcld  9382  eluzsubi  9557  fzen  10045  uzsubsubfz  10049  fzrev  10086  fzrev2  10087  fzrevral2  10108  fzshftral  10110  fz0fzdiffz0  10132  difelfzle  10136  difelfznle  10137  elfzomelpfzo  10233  zmodcl  10346  frecfzen2  10429  facndiv  10721  bccmpl  10736  bcpasc  10748  hashfz  10803  moddvds  11808  modmulconst  11832  dvds2sub  11835  dvdssub2  11844  dvdssubr  11848  fzocongeq  11866  odd2np1  11880  omoe  11903  omeo  11905  divalgb  11932  divalgmod  11934  ndvdsadd  11938  nn0seqcvgd  12043  congr  12102  cncongr1  12105  cncongr2  12106  prmdiv  12237  prmdiveq  12238  pythagtriplem4  12270  pythagtriplem8  12274  difsqpwdvds  12339
  Copyright terms: Public domain W3C validator