Colors of
variables: wff set class |
Syntax hints:
→ wi 4 ∧ wa 104
= wceq 1353 ∈
wcel 2148 (class class class)co 5877
ℂcc 7811 + caddc 7816 − cmin 8130
-cneg 8131 ℤcz 9255 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709
ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-cnex 7904 ax-resscn 7905 ax-1cn 7906 ax-1re 7907 ax-icn 7908 ax-addcl 7909 ax-addrcl 7910 ax-mulcl 7911 ax-addcom 7913 ax-addass 7915 ax-distr 7917 ax-i2m1 7918 ax-0lt1 7919 ax-0id 7921 ax-rnegex 7922 ax-cnre 7924 ax-pre-ltirr 7925 ax-pre-ltwlin 7926 ax-pre-lttrn 7927 ax-pre-ltadd 7929 |
This theorem depends on definitions:
df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-br 4006 df-opab 4067 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-iota 5180 df-fun 5220 df-fv 5226 df-riota 5833 df-ov 5880 df-oprab 5881 df-mpo 5882 df-pnf 7996 df-mnf 7997 df-xr 7998 df-ltxr 7999 df-le 8000 df-sub 8132 df-neg 8133 df-inn 8922 df-n0 9179 df-z 9256 |
This theorem is referenced by: ztri3or
9298 zrevaddcl
9305 znnsub
9306 nzadd
9307 znn0sub
9320 zneo
9356 zsubcld
9382 eluzsubi
9557 fzen
10045 uzsubsubfz
10049 fzrev
10086 fzrev2
10087 fzrevral2
10108 fzshftral
10110 fz0fzdiffz0
10132 difelfzle
10136 difelfznle
10137 elfzomelpfzo
10233 zmodcl
10346 frecfzen2
10429 facndiv
10721 bccmpl
10736 bcpasc
10748 hashfz
10803 moddvds
11808 modmulconst
11832 dvds2sub
11835 dvdssub2
11844 dvdssubr
11848 fzocongeq
11866 odd2np1
11880 omoe
11903 omeo
11905 divalgb
11932 divalgmod
11934 ndvdsadd
11938 nn0seqcvgd
12043 congr
12102 cncongr1
12105 cncongr2
12106 prmdiv
12237 prmdiveq
12238 pythagtriplem4
12270 pythagtriplem8
12274 difsqpwdvds
12339 |