![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > zsubcl | GIF version |
Description: Closure of subtraction of integers. (Contributed by NM, 11-May-2004.) |
Ref | Expression |
---|---|
zsubcl | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 − 𝑁) ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zcn 9289 | . . 3 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℂ) | |
2 | zcn 9289 | . . 3 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
3 | negsub 8236 | . . 3 ⊢ ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝑀 + -𝑁) = (𝑀 − 𝑁)) | |
4 | 1, 2, 3 | syl2an 289 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + -𝑁) = (𝑀 − 𝑁)) |
5 | znegcl 9315 | . . 3 ⊢ (𝑁 ∈ ℤ → -𝑁 ∈ ℤ) | |
6 | zaddcl 9324 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ -𝑁 ∈ ℤ) → (𝑀 + -𝑁) ∈ ℤ) | |
7 | 5, 6 | sylan2 286 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + -𝑁) ∈ ℤ) |
8 | 4, 7 | eqeltrrd 2267 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 − 𝑁) ∈ ℤ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2160 (class class class)co 5897 ℂcc 7840 + caddc 7845 − cmin 8159 -cneg 8160 ℤcz 9284 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-setind 4554 ax-cnex 7933 ax-resscn 7934 ax-1cn 7935 ax-1re 7936 ax-icn 7937 ax-addcl 7938 ax-addrcl 7939 ax-mulcl 7940 ax-addcom 7942 ax-addass 7944 ax-distr 7946 ax-i2m1 7947 ax-0lt1 7948 ax-0id 7950 ax-rnegex 7951 ax-cnre 7953 ax-pre-ltirr 7954 ax-pre-ltwlin 7955 ax-pre-lttrn 7956 ax-pre-ltadd 7958 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rab 2477 df-v 2754 df-sbc 2978 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-br 4019 df-opab 4080 df-id 4311 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-iota 5196 df-fun 5237 df-fv 5243 df-riota 5852 df-ov 5900 df-oprab 5901 df-mpo 5902 df-pnf 8025 df-mnf 8026 df-xr 8027 df-ltxr 8028 df-le 8029 df-sub 8161 df-neg 8162 df-inn 8951 df-n0 9208 df-z 9285 |
This theorem is referenced by: ztri3or 9327 zrevaddcl 9334 znnsub 9335 nzadd 9336 znn0sub 9349 zneo 9385 zsubcld 9411 eluzsubi 9587 fzen 10075 uzsubsubfz 10079 fzrev 10116 fzrev2 10117 fzrevral2 10138 fzshftral 10140 fz0fzdiffz0 10162 difelfzle 10166 difelfznle 10167 elfzomelpfzo 10263 zmodcl 10377 frecfzen2 10460 facndiv 10754 bccmpl 10769 bcpasc 10781 hashfz 10836 moddvds 11841 modmulconst 11865 dvds2sub 11868 dvdssub2 11877 dvdssubr 11881 fzocongeq 11899 odd2np1 11913 omoe 11936 omeo 11938 divalgb 11965 divalgmod 11967 ndvdsadd 11971 nn0seqcvgd 12076 congr 12135 cncongr1 12138 cncongr2 12139 prmdiv 12270 prmdiveq 12271 pythagtriplem4 12303 pythagtriplem8 12307 difsqpwdvds 12373 |
Copyright terms: Public domain | W3C validator |