ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zsubcl GIF version

Theorem zsubcl 9412
Description: Closure of subtraction of integers. (Contributed by NM, 11-May-2004.)
Assertion
Ref Expression
zsubcl ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁) ∈ ℤ)

Proof of Theorem zsubcl
StepHypRef Expression
1 zcn 9376 . . 3 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
2 zcn 9376 . . 3 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
3 negsub 8319 . . 3 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝑀 + -𝑁) = (𝑀𝑁))
41, 2, 3syl2an 289 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + -𝑁) = (𝑀𝑁))
5 znegcl 9402 . . 3 (𝑁 ∈ ℤ → -𝑁 ∈ ℤ)
6 zaddcl 9411 . . 3 ((𝑀 ∈ ℤ ∧ -𝑁 ∈ ℤ) → (𝑀 + -𝑁) ∈ ℤ)
75, 6sylan2 286 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + -𝑁) ∈ ℤ)
84, 7eqeltrrd 2282 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁) ∈ ℤ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1372  wcel 2175  (class class class)co 5943  cc 7922   + caddc 7927  cmin 8242  -cneg 8243  cz 9371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-addcom 8024  ax-addass 8026  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-0id 8032  ax-rnegex 8033  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-ltadd 8040
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-opab 4105  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-iota 5231  df-fun 5272  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-inn 9036  df-n0 9295  df-z 9372
This theorem is referenced by:  ztri3or  9414  zrevaddcl  9422  znnsub  9423  nzadd  9424  znn0sub  9437  zneo  9473  zsubcld  9499  eluzsubi  9675  fzen  10164  uzsubsubfz  10168  fzrev  10205  fzrev2  10206  fzrevral2  10227  fzshftral  10229  fz0fzdiffz0  10251  difelfzle  10255  difelfznle  10256  elfzomelpfzo  10358  zmodcl  10487  frecfzen2  10570  facndiv  10882  bccmpl  10897  bcpasc  10909  hashfz  10964  moddvds  12052  modmulconst  12076  dvds2sub  12079  dvdssub2  12088  dvdssubr  12092  fzocongeq  12111  3dvds  12117  odd2np1  12126  omoe  12149  omeo  12151  divalgb  12178  divalgmod  12180  ndvdsadd  12184  nn0seqcvgd  12305  congr  12364  cncongr1  12367  cncongr2  12368  prmdiv  12499  prmdiveq  12500  pythagtriplem4  12533  pythagtriplem8  12537  difsqpwdvds  12603  gausslemma2dlem6  15486  lgsquadlem1  15496
  Copyright terms: Public domain W3C validator