ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zsubcl GIF version

Theorem zsubcl 9386
Description: Closure of subtraction of integers. (Contributed by NM, 11-May-2004.)
Assertion
Ref Expression
zsubcl ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁) ∈ ℤ)

Proof of Theorem zsubcl
StepHypRef Expression
1 zcn 9350 . . 3 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
2 zcn 9350 . . 3 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
3 negsub 8293 . . 3 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝑀 + -𝑁) = (𝑀𝑁))
41, 2, 3syl2an 289 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + -𝑁) = (𝑀𝑁))
5 znegcl 9376 . . 3 (𝑁 ∈ ℤ → -𝑁 ∈ ℤ)
6 zaddcl 9385 . . 3 ((𝑀 ∈ ℤ ∧ -𝑁 ∈ ℤ) → (𝑀 + -𝑁) ∈ ℤ)
75, 6sylan2 286 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + -𝑁) ∈ ℤ)
84, 7eqeltrrd 2274 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁) ∈ ℤ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  (class class class)co 5925  cc 7896   + caddc 7901  cmin 8216  -cneg 8217  cz 9345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-addcom 7998  ax-addass 8000  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-0id 8006  ax-rnegex 8007  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-ltadd 8014
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-inn 9010  df-n0 9269  df-z 9346
This theorem is referenced by:  ztri3or  9388  zrevaddcl  9395  znnsub  9396  nzadd  9397  znn0sub  9410  zneo  9446  zsubcld  9472  eluzsubi  9648  fzen  10137  uzsubsubfz  10141  fzrev  10178  fzrev2  10179  fzrevral2  10200  fzshftral  10202  fz0fzdiffz0  10224  difelfzle  10228  difelfznle  10229  elfzomelpfzo  10326  zmodcl  10455  frecfzen2  10538  facndiv  10850  bccmpl  10865  bcpasc  10877  hashfz  10932  moddvds  11983  modmulconst  12007  dvds2sub  12010  dvdssub2  12019  dvdssubr  12023  fzocongeq  12042  3dvds  12048  odd2np1  12057  omoe  12080  omeo  12082  divalgb  12109  divalgmod  12111  ndvdsadd  12115  nn0seqcvgd  12236  congr  12295  cncongr1  12298  cncongr2  12299  prmdiv  12430  prmdiveq  12431  pythagtriplem4  12464  pythagtriplem8  12468  difsqpwdvds  12534  gausslemma2dlem6  15416  lgsquadlem1  15426
  Copyright terms: Public domain W3C validator