ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isrhm2d GIF version

Theorem isrhm2d 13664
Description: Demonstration of ring homomorphism. (Contributed by Mario Carneiro, 13-Jun-2015.)
Hypotheses
Ref Expression
isrhmd.b 𝐵 = (Base‘𝑅)
isrhmd.o 1 = (1r𝑅)
isrhmd.n 𝑁 = (1r𝑆)
isrhmd.t · = (.r𝑅)
isrhmd.u × = (.r𝑆)
isrhmd.r (𝜑𝑅 ∈ Ring)
isrhmd.s (𝜑𝑆 ∈ Ring)
isrhmd.ho (𝜑 → (𝐹1 ) = 𝑁)
isrhmd.ht ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) × (𝐹𝑦)))
isrhm2d.f (𝜑𝐹 ∈ (𝑅 GrpHom 𝑆))
Assertion
Ref Expression
isrhm2d (𝜑𝐹 ∈ (𝑅 RingHom 𝑆))
Distinct variable groups:   𝜑,𝑥,𝑦   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦   𝑥,𝑅,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   · (𝑥,𝑦)   × (𝑥,𝑦)   1 (𝑥,𝑦)   𝑁(𝑥,𝑦)

Proof of Theorem isrhm2d
StepHypRef Expression
1 isrhmd.r . 2 (𝜑𝑅 ∈ Ring)
2 isrhmd.s . 2 (𝜑𝑆 ∈ Ring)
3 isrhm2d.f . . 3 (𝜑𝐹 ∈ (𝑅 GrpHom 𝑆))
4 eqid 2193 . . . . . 6 (mulGrp‘𝑅) = (mulGrp‘𝑅)
54ringmgp 13501 . . . . 5 (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd)
61, 5syl 14 . . . 4 (𝜑 → (mulGrp‘𝑅) ∈ Mnd)
7 eqid 2193 . . . . . 6 (mulGrp‘𝑆) = (mulGrp‘𝑆)
87ringmgp 13501 . . . . 5 (𝑆 ∈ Ring → (mulGrp‘𝑆) ∈ Mnd)
92, 8syl 14 . . . 4 (𝜑 → (mulGrp‘𝑆) ∈ Mnd)
10 isrhmd.b . . . . . . . 8 𝐵 = (Base‘𝑅)
11 eqid 2193 . . . . . . . 8 (Base‘𝑆) = (Base‘𝑆)
1210, 11ghmf 13320 . . . . . . 7 (𝐹 ∈ (𝑅 GrpHom 𝑆) → 𝐹:𝐵⟶(Base‘𝑆))
133, 12syl 14 . . . . . 6 (𝜑𝐹:𝐵⟶(Base‘𝑆))
144, 10mgpbasg 13425 . . . . . . . 8 (𝑅 ∈ Ring → 𝐵 = (Base‘(mulGrp‘𝑅)))
151, 14syl 14 . . . . . . 7 (𝜑𝐵 = (Base‘(mulGrp‘𝑅)))
167, 11mgpbasg 13425 . . . . . . . 8 (𝑆 ∈ Ring → (Base‘𝑆) = (Base‘(mulGrp‘𝑆)))
172, 16syl 14 . . . . . . 7 (𝜑 → (Base‘𝑆) = (Base‘(mulGrp‘𝑆)))
1815, 17feq23d 5400 . . . . . 6 (𝜑 → (𝐹:𝐵⟶(Base‘𝑆) ↔ 𝐹:(Base‘(mulGrp‘𝑅))⟶(Base‘(mulGrp‘𝑆))))
1913, 18mpbid 147 . . . . 5 (𝜑𝐹:(Base‘(mulGrp‘𝑅))⟶(Base‘(mulGrp‘𝑆)))
20 isrhmd.ht . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) × (𝐹𝑦)))
2120ralrimivva 2576 . . . . . 6 (𝜑 → ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) × (𝐹𝑦)))
22 isrhmd.t . . . . . . . . . . . . 13 · = (.r𝑅)
234, 22mgpplusgg 13423 . . . . . . . . . . . 12 (𝑅 ∈ Ring → · = (+g‘(mulGrp‘𝑅)))
241, 23syl 14 . . . . . . . . . . 11 (𝜑· = (+g‘(mulGrp‘𝑅)))
2524oveqd 5936 . . . . . . . . . 10 (𝜑 → (𝑥 · 𝑦) = (𝑥(+g‘(mulGrp‘𝑅))𝑦))
2625fveq2d 5559 . . . . . . . . 9 (𝜑 → (𝐹‘(𝑥 · 𝑦)) = (𝐹‘(𝑥(+g‘(mulGrp‘𝑅))𝑦)))
27 isrhmd.u . . . . . . . . . . . 12 × = (.r𝑆)
287, 27mgpplusgg 13423 . . . . . . . . . . 11 (𝑆 ∈ Ring → × = (+g‘(mulGrp‘𝑆)))
292, 28syl 14 . . . . . . . . . 10 (𝜑× = (+g‘(mulGrp‘𝑆)))
3029oveqd 5936 . . . . . . . . 9 (𝜑 → ((𝐹𝑥) × (𝐹𝑦)) = ((𝐹𝑥)(+g‘(mulGrp‘𝑆))(𝐹𝑦)))
3126, 30eqeq12d 2208 . . . . . . . 8 (𝜑 → ((𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) × (𝐹𝑦)) ↔ (𝐹‘(𝑥(+g‘(mulGrp‘𝑅))𝑦)) = ((𝐹𝑥)(+g‘(mulGrp‘𝑆))(𝐹𝑦))))
3215, 31raleqbidv 2706 . . . . . . 7 (𝜑 → (∀𝑦𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) × (𝐹𝑦)) ↔ ∀𝑦 ∈ (Base‘(mulGrp‘𝑅))(𝐹‘(𝑥(+g‘(mulGrp‘𝑅))𝑦)) = ((𝐹𝑥)(+g‘(mulGrp‘𝑆))(𝐹𝑦))))
3315, 32raleqbidv 2706 . . . . . 6 (𝜑 → (∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) × (𝐹𝑦)) ↔ ∀𝑥 ∈ (Base‘(mulGrp‘𝑅))∀𝑦 ∈ (Base‘(mulGrp‘𝑅))(𝐹‘(𝑥(+g‘(mulGrp‘𝑅))𝑦)) = ((𝐹𝑥)(+g‘(mulGrp‘𝑆))(𝐹𝑦))))
3421, 33mpbid 147 . . . . 5 (𝜑 → ∀𝑥 ∈ (Base‘(mulGrp‘𝑅))∀𝑦 ∈ (Base‘(mulGrp‘𝑅))(𝐹‘(𝑥(+g‘(mulGrp‘𝑅))𝑦)) = ((𝐹𝑥)(+g‘(mulGrp‘𝑆))(𝐹𝑦)))
35 isrhmd.ho . . . . . 6 (𝜑 → (𝐹1 ) = 𝑁)
36 isrhmd.o . . . . . . . . 9 1 = (1r𝑅)
374, 36ringidvalg 13460 . . . . . . . 8 (𝑅 ∈ Ring → 1 = (0g‘(mulGrp‘𝑅)))
381, 37syl 14 . . . . . . 7 (𝜑1 = (0g‘(mulGrp‘𝑅)))
3938fveq2d 5559 . . . . . 6 (𝜑 → (𝐹1 ) = (𝐹‘(0g‘(mulGrp‘𝑅))))
40 isrhmd.n . . . . . . . 8 𝑁 = (1r𝑆)
417, 40ringidvalg 13460 . . . . . . 7 (𝑆 ∈ Ring → 𝑁 = (0g‘(mulGrp‘𝑆)))
422, 41syl 14 . . . . . 6 (𝜑𝑁 = (0g‘(mulGrp‘𝑆)))
4335, 39, 423eqtr3d 2234 . . . . 5 (𝜑 → (𝐹‘(0g‘(mulGrp‘𝑅))) = (0g‘(mulGrp‘𝑆)))
4419, 34, 433jca 1179 . . . 4 (𝜑 → (𝐹:(Base‘(mulGrp‘𝑅))⟶(Base‘(mulGrp‘𝑆)) ∧ ∀𝑥 ∈ (Base‘(mulGrp‘𝑅))∀𝑦 ∈ (Base‘(mulGrp‘𝑅))(𝐹‘(𝑥(+g‘(mulGrp‘𝑅))𝑦)) = ((𝐹𝑥)(+g‘(mulGrp‘𝑆))(𝐹𝑦)) ∧ (𝐹‘(0g‘(mulGrp‘𝑅))) = (0g‘(mulGrp‘𝑆))))
45 eqid 2193 . . . . 5 (Base‘(mulGrp‘𝑅)) = (Base‘(mulGrp‘𝑅))
46 eqid 2193 . . . . 5 (Base‘(mulGrp‘𝑆)) = (Base‘(mulGrp‘𝑆))
47 eqid 2193 . . . . 5 (+g‘(mulGrp‘𝑅)) = (+g‘(mulGrp‘𝑅))
48 eqid 2193 . . . . 5 (+g‘(mulGrp‘𝑆)) = (+g‘(mulGrp‘𝑆))
49 eqid 2193 . . . . 5 (0g‘(mulGrp‘𝑅)) = (0g‘(mulGrp‘𝑅))
50 eqid 2193 . . . . 5 (0g‘(mulGrp‘𝑆)) = (0g‘(mulGrp‘𝑆))
5145, 46, 47, 48, 49, 50ismhm 13036 . . . 4 (𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)) ↔ (((mulGrp‘𝑅) ∈ Mnd ∧ (mulGrp‘𝑆) ∈ Mnd) ∧ (𝐹:(Base‘(mulGrp‘𝑅))⟶(Base‘(mulGrp‘𝑆)) ∧ ∀𝑥 ∈ (Base‘(mulGrp‘𝑅))∀𝑦 ∈ (Base‘(mulGrp‘𝑅))(𝐹‘(𝑥(+g‘(mulGrp‘𝑅))𝑦)) = ((𝐹𝑥)(+g‘(mulGrp‘𝑆))(𝐹𝑦)) ∧ (𝐹‘(0g‘(mulGrp‘𝑅))) = (0g‘(mulGrp‘𝑆)))))
526, 9, 44, 51syl21anbrc 1184 . . 3 (𝜑𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)))
533, 52jca 306 . 2 (𝜑 → (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆))))
544, 7isrhm 13657 . 2 (𝐹 ∈ (𝑅 RingHom 𝑆) ↔ ((𝑅 ∈ Ring ∧ 𝑆 ∈ Ring) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)))))
551, 2, 53, 54syl21anbrc 1184 1 (𝜑𝐹 ∈ (𝑅 RingHom 𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2164  wral 2472  wf 5251  cfv 5255  (class class class)co 5919  Basecbs 12621  +gcplusg 12698  .rcmulr 12699  0gc0g 12870  Mndcmnd 13000   MndHom cmhm 13032   GrpHom cghm 13313  mulGrpcmgp 13419  1rcur 13458  Ringcrg 13495   RingHom crh 13649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-pre-ltirr 7986  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-map 6706  df-pnf 8058  df-mnf 8059  df-ltxr 8061  df-inn 8985  df-2 9043  df-3 9044  df-ndx 12624  df-slot 12625  df-base 12627  df-sets 12628  df-plusg 12711  df-mulr 12712  df-0g 12872  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-mhm 13034  df-grp 13078  df-ghm 13314  df-mgp 13420  df-ur 13459  df-ring 13497  df-rhm 13651
This theorem is referenced by:  isrhmd  13665  rhmopp  13675  qusrhm  14027  mulgrhm  14108
  Copyright terms: Public domain W3C validator