ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isrhm2d GIF version

Theorem isrhm2d 14123
Description: Demonstration of ring homomorphism. (Contributed by Mario Carneiro, 13-Jun-2015.)
Hypotheses
Ref Expression
isrhmd.b 𝐵 = (Base‘𝑅)
isrhmd.o 1 = (1r𝑅)
isrhmd.n 𝑁 = (1r𝑆)
isrhmd.t · = (.r𝑅)
isrhmd.u × = (.r𝑆)
isrhmd.r (𝜑𝑅 ∈ Ring)
isrhmd.s (𝜑𝑆 ∈ Ring)
isrhmd.ho (𝜑 → (𝐹1 ) = 𝑁)
isrhmd.ht ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) × (𝐹𝑦)))
isrhm2d.f (𝜑𝐹 ∈ (𝑅 GrpHom 𝑆))
Assertion
Ref Expression
isrhm2d (𝜑𝐹 ∈ (𝑅 RingHom 𝑆))
Distinct variable groups:   𝜑,𝑥,𝑦   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦   𝑥,𝑅,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   · (𝑥,𝑦)   × (𝑥,𝑦)   1 (𝑥,𝑦)   𝑁(𝑥,𝑦)

Proof of Theorem isrhm2d
StepHypRef Expression
1 isrhmd.r . 2 (𝜑𝑅 ∈ Ring)
2 isrhmd.s . 2 (𝜑𝑆 ∈ Ring)
3 isrhm2d.f . . 3 (𝜑𝐹 ∈ (𝑅 GrpHom 𝑆))
4 eqid 2229 . . . . . 6 (mulGrp‘𝑅) = (mulGrp‘𝑅)
54ringmgp 13960 . . . . 5 (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd)
61, 5syl 14 . . . 4 (𝜑 → (mulGrp‘𝑅) ∈ Mnd)
7 eqid 2229 . . . . . 6 (mulGrp‘𝑆) = (mulGrp‘𝑆)
87ringmgp 13960 . . . . 5 (𝑆 ∈ Ring → (mulGrp‘𝑆) ∈ Mnd)
92, 8syl 14 . . . 4 (𝜑 → (mulGrp‘𝑆) ∈ Mnd)
10 isrhmd.b . . . . . . . 8 𝐵 = (Base‘𝑅)
11 eqid 2229 . . . . . . . 8 (Base‘𝑆) = (Base‘𝑆)
1210, 11ghmf 13779 . . . . . . 7 (𝐹 ∈ (𝑅 GrpHom 𝑆) → 𝐹:𝐵⟶(Base‘𝑆))
133, 12syl 14 . . . . . 6 (𝜑𝐹:𝐵⟶(Base‘𝑆))
144, 10mgpbasg 13884 . . . . . . . 8 (𝑅 ∈ Ring → 𝐵 = (Base‘(mulGrp‘𝑅)))
151, 14syl 14 . . . . . . 7 (𝜑𝐵 = (Base‘(mulGrp‘𝑅)))
167, 11mgpbasg 13884 . . . . . . . 8 (𝑆 ∈ Ring → (Base‘𝑆) = (Base‘(mulGrp‘𝑆)))
172, 16syl 14 . . . . . . 7 (𝜑 → (Base‘𝑆) = (Base‘(mulGrp‘𝑆)))
1815, 17feq23d 5468 . . . . . 6 (𝜑 → (𝐹:𝐵⟶(Base‘𝑆) ↔ 𝐹:(Base‘(mulGrp‘𝑅))⟶(Base‘(mulGrp‘𝑆))))
1913, 18mpbid 147 . . . . 5 (𝜑𝐹:(Base‘(mulGrp‘𝑅))⟶(Base‘(mulGrp‘𝑆)))
20 isrhmd.ht . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) × (𝐹𝑦)))
2120ralrimivva 2612 . . . . . 6 (𝜑 → ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) × (𝐹𝑦)))
22 isrhmd.t . . . . . . . . . . . . 13 · = (.r𝑅)
234, 22mgpplusgg 13882 . . . . . . . . . . . 12 (𝑅 ∈ Ring → · = (+g‘(mulGrp‘𝑅)))
241, 23syl 14 . . . . . . . . . . 11 (𝜑· = (+g‘(mulGrp‘𝑅)))
2524oveqd 6017 . . . . . . . . . 10 (𝜑 → (𝑥 · 𝑦) = (𝑥(+g‘(mulGrp‘𝑅))𝑦))
2625fveq2d 5630 . . . . . . . . 9 (𝜑 → (𝐹‘(𝑥 · 𝑦)) = (𝐹‘(𝑥(+g‘(mulGrp‘𝑅))𝑦)))
27 isrhmd.u . . . . . . . . . . . 12 × = (.r𝑆)
287, 27mgpplusgg 13882 . . . . . . . . . . 11 (𝑆 ∈ Ring → × = (+g‘(mulGrp‘𝑆)))
292, 28syl 14 . . . . . . . . . 10 (𝜑× = (+g‘(mulGrp‘𝑆)))
3029oveqd 6017 . . . . . . . . 9 (𝜑 → ((𝐹𝑥) × (𝐹𝑦)) = ((𝐹𝑥)(+g‘(mulGrp‘𝑆))(𝐹𝑦)))
3126, 30eqeq12d 2244 . . . . . . . 8 (𝜑 → ((𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) × (𝐹𝑦)) ↔ (𝐹‘(𝑥(+g‘(mulGrp‘𝑅))𝑦)) = ((𝐹𝑥)(+g‘(mulGrp‘𝑆))(𝐹𝑦))))
3215, 31raleqbidv 2744 . . . . . . 7 (𝜑 → (∀𝑦𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) × (𝐹𝑦)) ↔ ∀𝑦 ∈ (Base‘(mulGrp‘𝑅))(𝐹‘(𝑥(+g‘(mulGrp‘𝑅))𝑦)) = ((𝐹𝑥)(+g‘(mulGrp‘𝑆))(𝐹𝑦))))
3315, 32raleqbidv 2744 . . . . . 6 (𝜑 → (∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) × (𝐹𝑦)) ↔ ∀𝑥 ∈ (Base‘(mulGrp‘𝑅))∀𝑦 ∈ (Base‘(mulGrp‘𝑅))(𝐹‘(𝑥(+g‘(mulGrp‘𝑅))𝑦)) = ((𝐹𝑥)(+g‘(mulGrp‘𝑆))(𝐹𝑦))))
3421, 33mpbid 147 . . . . 5 (𝜑 → ∀𝑥 ∈ (Base‘(mulGrp‘𝑅))∀𝑦 ∈ (Base‘(mulGrp‘𝑅))(𝐹‘(𝑥(+g‘(mulGrp‘𝑅))𝑦)) = ((𝐹𝑥)(+g‘(mulGrp‘𝑆))(𝐹𝑦)))
35 isrhmd.ho . . . . . 6 (𝜑 → (𝐹1 ) = 𝑁)
36 isrhmd.o . . . . . . . . 9 1 = (1r𝑅)
374, 36ringidvalg 13919 . . . . . . . 8 (𝑅 ∈ Ring → 1 = (0g‘(mulGrp‘𝑅)))
381, 37syl 14 . . . . . . 7 (𝜑1 = (0g‘(mulGrp‘𝑅)))
3938fveq2d 5630 . . . . . 6 (𝜑 → (𝐹1 ) = (𝐹‘(0g‘(mulGrp‘𝑅))))
40 isrhmd.n . . . . . . . 8 𝑁 = (1r𝑆)
417, 40ringidvalg 13919 . . . . . . 7 (𝑆 ∈ Ring → 𝑁 = (0g‘(mulGrp‘𝑆)))
422, 41syl 14 . . . . . 6 (𝜑𝑁 = (0g‘(mulGrp‘𝑆)))
4335, 39, 423eqtr3d 2270 . . . . 5 (𝜑 → (𝐹‘(0g‘(mulGrp‘𝑅))) = (0g‘(mulGrp‘𝑆)))
4419, 34, 433jca 1201 . . . 4 (𝜑 → (𝐹:(Base‘(mulGrp‘𝑅))⟶(Base‘(mulGrp‘𝑆)) ∧ ∀𝑥 ∈ (Base‘(mulGrp‘𝑅))∀𝑦 ∈ (Base‘(mulGrp‘𝑅))(𝐹‘(𝑥(+g‘(mulGrp‘𝑅))𝑦)) = ((𝐹𝑥)(+g‘(mulGrp‘𝑆))(𝐹𝑦)) ∧ (𝐹‘(0g‘(mulGrp‘𝑅))) = (0g‘(mulGrp‘𝑆))))
45 eqid 2229 . . . . 5 (Base‘(mulGrp‘𝑅)) = (Base‘(mulGrp‘𝑅))
46 eqid 2229 . . . . 5 (Base‘(mulGrp‘𝑆)) = (Base‘(mulGrp‘𝑆))
47 eqid 2229 . . . . 5 (+g‘(mulGrp‘𝑅)) = (+g‘(mulGrp‘𝑅))
48 eqid 2229 . . . . 5 (+g‘(mulGrp‘𝑆)) = (+g‘(mulGrp‘𝑆))
49 eqid 2229 . . . . 5 (0g‘(mulGrp‘𝑅)) = (0g‘(mulGrp‘𝑅))
50 eqid 2229 . . . . 5 (0g‘(mulGrp‘𝑆)) = (0g‘(mulGrp‘𝑆))
5145, 46, 47, 48, 49, 50ismhm 13489 . . . 4 (𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)) ↔ (((mulGrp‘𝑅) ∈ Mnd ∧ (mulGrp‘𝑆) ∈ Mnd) ∧ (𝐹:(Base‘(mulGrp‘𝑅))⟶(Base‘(mulGrp‘𝑆)) ∧ ∀𝑥 ∈ (Base‘(mulGrp‘𝑅))∀𝑦 ∈ (Base‘(mulGrp‘𝑅))(𝐹‘(𝑥(+g‘(mulGrp‘𝑅))𝑦)) = ((𝐹𝑥)(+g‘(mulGrp‘𝑆))(𝐹𝑦)) ∧ (𝐹‘(0g‘(mulGrp‘𝑅))) = (0g‘(mulGrp‘𝑆)))))
526, 9, 44, 51syl21anbrc 1206 . . 3 (𝜑𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)))
533, 52jca 306 . 2 (𝜑 → (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆))))
544, 7isrhm 14116 . 2 (𝐹 ∈ (𝑅 RingHom 𝑆) ↔ ((𝑅 ∈ Ring ∧ 𝑆 ∈ Ring) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)))))
551, 2, 53, 54syl21anbrc 1206 1 (𝜑𝐹 ∈ (𝑅 RingHom 𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 1002   = wceq 1395  wcel 2200  wral 2508  wf 5313  cfv 5317  (class class class)co 6000  Basecbs 13027  +gcplusg 13105  .rcmulr 13106  0gc0g 13284  Mndcmnd 13444   MndHom cmhm 13485   GrpHom cghm 13772  mulGrpcmgp 13878  1rcur 13917  Ringcrg 13954   RingHom crh 14108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-pre-ltirr 8107  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-map 6795  df-pnf 8179  df-mnf 8180  df-ltxr 8182  df-inn 9107  df-2 9165  df-3 9166  df-ndx 13030  df-slot 13031  df-base 13033  df-sets 13034  df-plusg 13118  df-mulr 13119  df-0g 13286  df-mgm 13384  df-sgrp 13430  df-mnd 13445  df-mhm 13487  df-grp 13531  df-ghm 13773  df-mgp 13879  df-ur 13918  df-ring 13956  df-rhm 14110
This theorem is referenced by:  isrhmd  14124  rhmopp  14134  qusrhm  14486  mulgrhm  14567
  Copyright terms: Public domain W3C validator