Proof of Theorem isrhm2d
| Step | Hyp | Ref
| Expression |
| 1 | | isrhmd.r |
. 2
⊢ (𝜑 → 𝑅 ∈ Ring) |
| 2 | | isrhmd.s |
. 2
⊢ (𝜑 → 𝑆 ∈ Ring) |
| 3 | | isrhm2d.f |
. . 3
⊢ (𝜑 → 𝐹 ∈ (𝑅 GrpHom 𝑆)) |
| 4 | | eqid 2196 |
. . . . . 6
⊢
(mulGrp‘𝑅) =
(mulGrp‘𝑅) |
| 5 | 4 | ringmgp 13634 |
. . . . 5
⊢ (𝑅 ∈ Ring →
(mulGrp‘𝑅) ∈
Mnd) |
| 6 | 1, 5 | syl 14 |
. . . 4
⊢ (𝜑 → (mulGrp‘𝑅) ∈ Mnd) |
| 7 | | eqid 2196 |
. . . . . 6
⊢
(mulGrp‘𝑆) =
(mulGrp‘𝑆) |
| 8 | 7 | ringmgp 13634 |
. . . . 5
⊢ (𝑆 ∈ Ring →
(mulGrp‘𝑆) ∈
Mnd) |
| 9 | 2, 8 | syl 14 |
. . . 4
⊢ (𝜑 → (mulGrp‘𝑆) ∈ Mnd) |
| 10 | | isrhmd.b |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝑅) |
| 11 | | eqid 2196 |
. . . . . . . 8
⊢
(Base‘𝑆) =
(Base‘𝑆) |
| 12 | 10, 11 | ghmf 13453 |
. . . . . . 7
⊢ (𝐹 ∈ (𝑅 GrpHom 𝑆) → 𝐹:𝐵⟶(Base‘𝑆)) |
| 13 | 3, 12 | syl 14 |
. . . . . 6
⊢ (𝜑 → 𝐹:𝐵⟶(Base‘𝑆)) |
| 14 | 4, 10 | mgpbasg 13558 |
. . . . . . . 8
⊢ (𝑅 ∈ Ring → 𝐵 =
(Base‘(mulGrp‘𝑅))) |
| 15 | 1, 14 | syl 14 |
. . . . . . 7
⊢ (𝜑 → 𝐵 = (Base‘(mulGrp‘𝑅))) |
| 16 | 7, 11 | mgpbasg 13558 |
. . . . . . . 8
⊢ (𝑆 ∈ Ring →
(Base‘𝑆) =
(Base‘(mulGrp‘𝑆))) |
| 17 | 2, 16 | syl 14 |
. . . . . . 7
⊢ (𝜑 → (Base‘𝑆) =
(Base‘(mulGrp‘𝑆))) |
| 18 | 15, 17 | feq23d 5406 |
. . . . . 6
⊢ (𝜑 → (𝐹:𝐵⟶(Base‘𝑆) ↔ 𝐹:(Base‘(mulGrp‘𝑅))⟶(Base‘(mulGrp‘𝑆)))) |
| 19 | 13, 18 | mpbid 147 |
. . . . 5
⊢ (𝜑 → 𝐹:(Base‘(mulGrp‘𝑅))⟶(Base‘(mulGrp‘𝑆))) |
| 20 | | isrhmd.ht |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) × (𝐹‘𝑦))) |
| 21 | 20 | ralrimivva 2579 |
. . . . . 6
⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) × (𝐹‘𝑦))) |
| 22 | | isrhmd.t |
. . . . . . . . . . . . 13
⊢ · =
(.r‘𝑅) |
| 23 | 4, 22 | mgpplusgg 13556 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ Ring → · =
(+g‘(mulGrp‘𝑅))) |
| 24 | 1, 23 | syl 14 |
. . . . . . . . . . 11
⊢ (𝜑 → · =
(+g‘(mulGrp‘𝑅))) |
| 25 | 24 | oveqd 5942 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 · 𝑦) = (𝑥(+g‘(mulGrp‘𝑅))𝑦)) |
| 26 | 25 | fveq2d 5565 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹‘(𝑥 · 𝑦)) = (𝐹‘(𝑥(+g‘(mulGrp‘𝑅))𝑦))) |
| 27 | | isrhmd.u |
. . . . . . . . . . . 12
⊢ × =
(.r‘𝑆) |
| 28 | 7, 27 | mgpplusgg 13556 |
. . . . . . . . . . 11
⊢ (𝑆 ∈ Ring → × =
(+g‘(mulGrp‘𝑆))) |
| 29 | 2, 28 | syl 14 |
. . . . . . . . . 10
⊢ (𝜑 → × =
(+g‘(mulGrp‘𝑆))) |
| 30 | 29 | oveqd 5942 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐹‘𝑥) × (𝐹‘𝑦)) = ((𝐹‘𝑥)(+g‘(mulGrp‘𝑆))(𝐹‘𝑦))) |
| 31 | 26, 30 | eqeq12d 2211 |
. . . . . . . 8
⊢ (𝜑 → ((𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) × (𝐹‘𝑦)) ↔ (𝐹‘(𝑥(+g‘(mulGrp‘𝑅))𝑦)) = ((𝐹‘𝑥)(+g‘(mulGrp‘𝑆))(𝐹‘𝑦)))) |
| 32 | 15, 31 | raleqbidv 2709 |
. . . . . . 7
⊢ (𝜑 → (∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) × (𝐹‘𝑦)) ↔ ∀𝑦 ∈ (Base‘(mulGrp‘𝑅))(𝐹‘(𝑥(+g‘(mulGrp‘𝑅))𝑦)) = ((𝐹‘𝑥)(+g‘(mulGrp‘𝑆))(𝐹‘𝑦)))) |
| 33 | 15, 32 | raleqbidv 2709 |
. . . . . 6
⊢ (𝜑 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) × (𝐹‘𝑦)) ↔ ∀𝑥 ∈ (Base‘(mulGrp‘𝑅))∀𝑦 ∈ (Base‘(mulGrp‘𝑅))(𝐹‘(𝑥(+g‘(mulGrp‘𝑅))𝑦)) = ((𝐹‘𝑥)(+g‘(mulGrp‘𝑆))(𝐹‘𝑦)))) |
| 34 | 21, 33 | mpbid 147 |
. . . . 5
⊢ (𝜑 → ∀𝑥 ∈ (Base‘(mulGrp‘𝑅))∀𝑦 ∈ (Base‘(mulGrp‘𝑅))(𝐹‘(𝑥(+g‘(mulGrp‘𝑅))𝑦)) = ((𝐹‘𝑥)(+g‘(mulGrp‘𝑆))(𝐹‘𝑦))) |
| 35 | | isrhmd.ho |
. . . . . 6
⊢ (𝜑 → (𝐹‘ 1 ) = 𝑁) |
| 36 | | isrhmd.o |
. . . . . . . . 9
⊢ 1 =
(1r‘𝑅) |
| 37 | 4, 36 | ringidvalg 13593 |
. . . . . . . 8
⊢ (𝑅 ∈ Ring → 1 =
(0g‘(mulGrp‘𝑅))) |
| 38 | 1, 37 | syl 14 |
. . . . . . 7
⊢ (𝜑 → 1 =
(0g‘(mulGrp‘𝑅))) |
| 39 | 38 | fveq2d 5565 |
. . . . . 6
⊢ (𝜑 → (𝐹‘ 1 ) = (𝐹‘(0g‘(mulGrp‘𝑅)))) |
| 40 | | isrhmd.n |
. . . . . . . 8
⊢ 𝑁 = (1r‘𝑆) |
| 41 | 7, 40 | ringidvalg 13593 |
. . . . . . 7
⊢ (𝑆 ∈ Ring → 𝑁 =
(0g‘(mulGrp‘𝑆))) |
| 42 | 2, 41 | syl 14 |
. . . . . 6
⊢ (𝜑 → 𝑁 = (0g‘(mulGrp‘𝑆))) |
| 43 | 35, 39, 42 | 3eqtr3d 2237 |
. . . . 5
⊢ (𝜑 → (𝐹‘(0g‘(mulGrp‘𝑅))) =
(0g‘(mulGrp‘𝑆))) |
| 44 | 19, 34, 43 | 3jca 1179 |
. . . 4
⊢ (𝜑 → (𝐹:(Base‘(mulGrp‘𝑅))⟶(Base‘(mulGrp‘𝑆)) ∧ ∀𝑥 ∈
(Base‘(mulGrp‘𝑅))∀𝑦 ∈ (Base‘(mulGrp‘𝑅))(𝐹‘(𝑥(+g‘(mulGrp‘𝑅))𝑦)) = ((𝐹‘𝑥)(+g‘(mulGrp‘𝑆))(𝐹‘𝑦)) ∧ (𝐹‘(0g‘(mulGrp‘𝑅))) =
(0g‘(mulGrp‘𝑆)))) |
| 45 | | eqid 2196 |
. . . . 5
⊢
(Base‘(mulGrp‘𝑅)) = (Base‘(mulGrp‘𝑅)) |
| 46 | | eqid 2196 |
. . . . 5
⊢
(Base‘(mulGrp‘𝑆)) = (Base‘(mulGrp‘𝑆)) |
| 47 | | eqid 2196 |
. . . . 5
⊢
(+g‘(mulGrp‘𝑅)) =
(+g‘(mulGrp‘𝑅)) |
| 48 | | eqid 2196 |
. . . . 5
⊢
(+g‘(mulGrp‘𝑆)) =
(+g‘(mulGrp‘𝑆)) |
| 49 | | eqid 2196 |
. . . . 5
⊢
(0g‘(mulGrp‘𝑅)) =
(0g‘(mulGrp‘𝑅)) |
| 50 | | eqid 2196 |
. . . . 5
⊢
(0g‘(mulGrp‘𝑆)) =
(0g‘(mulGrp‘𝑆)) |
| 51 | 45, 46, 47, 48, 49, 50 | ismhm 13163 |
. . . 4
⊢ (𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)) ↔ (((mulGrp‘𝑅) ∈ Mnd ∧
(mulGrp‘𝑆) ∈
Mnd) ∧ (𝐹:(Base‘(mulGrp‘𝑅))⟶(Base‘(mulGrp‘𝑆)) ∧ ∀𝑥 ∈
(Base‘(mulGrp‘𝑅))∀𝑦 ∈ (Base‘(mulGrp‘𝑅))(𝐹‘(𝑥(+g‘(mulGrp‘𝑅))𝑦)) = ((𝐹‘𝑥)(+g‘(mulGrp‘𝑆))(𝐹‘𝑦)) ∧ (𝐹‘(0g‘(mulGrp‘𝑅))) =
(0g‘(mulGrp‘𝑆))))) |
| 52 | 6, 9, 44, 51 | syl21anbrc 1184 |
. . 3
⊢ (𝜑 → 𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆))) |
| 53 | 3, 52 | jca 306 |
. 2
⊢ (𝜑 → (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)))) |
| 54 | 4, 7 | isrhm 13790 |
. 2
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) ↔ ((𝑅 ∈ Ring ∧ 𝑆 ∈ Ring) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆))))) |
| 55 | 1, 2, 53, 54 | syl21anbrc 1184 |
1
⊢ (𝜑 → 𝐹 ∈ (𝑅 RingHom 𝑆)) |