ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isrhm2d GIF version

Theorem isrhm2d 13661
Description: Demonstration of ring homomorphism. (Contributed by Mario Carneiro, 13-Jun-2015.)
Hypotheses
Ref Expression
isrhmd.b 𝐵 = (Base‘𝑅)
isrhmd.o 1 = (1r𝑅)
isrhmd.n 𝑁 = (1r𝑆)
isrhmd.t · = (.r𝑅)
isrhmd.u × = (.r𝑆)
isrhmd.r (𝜑𝑅 ∈ Ring)
isrhmd.s (𝜑𝑆 ∈ Ring)
isrhmd.ho (𝜑 → (𝐹1 ) = 𝑁)
isrhmd.ht ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) × (𝐹𝑦)))
isrhm2d.f (𝜑𝐹 ∈ (𝑅 GrpHom 𝑆))
Assertion
Ref Expression
isrhm2d (𝜑𝐹 ∈ (𝑅 RingHom 𝑆))
Distinct variable groups:   𝜑,𝑥,𝑦   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦   𝑥,𝑅,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   · (𝑥,𝑦)   × (𝑥,𝑦)   1 (𝑥,𝑦)   𝑁(𝑥,𝑦)

Proof of Theorem isrhm2d
StepHypRef Expression
1 isrhmd.r . 2 (𝜑𝑅 ∈ Ring)
2 isrhmd.s . 2 (𝜑𝑆 ∈ Ring)
3 isrhm2d.f . . 3 (𝜑𝐹 ∈ (𝑅 GrpHom 𝑆))
4 eqid 2193 . . . . . 6 (mulGrp‘𝑅) = (mulGrp‘𝑅)
54ringmgp 13498 . . . . 5 (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd)
61, 5syl 14 . . . 4 (𝜑 → (mulGrp‘𝑅) ∈ Mnd)
7 eqid 2193 . . . . . 6 (mulGrp‘𝑆) = (mulGrp‘𝑆)
87ringmgp 13498 . . . . 5 (𝑆 ∈ Ring → (mulGrp‘𝑆) ∈ Mnd)
92, 8syl 14 . . . 4 (𝜑 → (mulGrp‘𝑆) ∈ Mnd)
10 isrhmd.b . . . . . . . 8 𝐵 = (Base‘𝑅)
11 eqid 2193 . . . . . . . 8 (Base‘𝑆) = (Base‘𝑆)
1210, 11ghmf 13317 . . . . . . 7 (𝐹 ∈ (𝑅 GrpHom 𝑆) → 𝐹:𝐵⟶(Base‘𝑆))
133, 12syl 14 . . . . . 6 (𝜑𝐹:𝐵⟶(Base‘𝑆))
144, 10mgpbasg 13422 . . . . . . . 8 (𝑅 ∈ Ring → 𝐵 = (Base‘(mulGrp‘𝑅)))
151, 14syl 14 . . . . . . 7 (𝜑𝐵 = (Base‘(mulGrp‘𝑅)))
167, 11mgpbasg 13422 . . . . . . . 8 (𝑆 ∈ Ring → (Base‘𝑆) = (Base‘(mulGrp‘𝑆)))
172, 16syl 14 . . . . . . 7 (𝜑 → (Base‘𝑆) = (Base‘(mulGrp‘𝑆)))
1815, 17feq23d 5399 . . . . . 6 (𝜑 → (𝐹:𝐵⟶(Base‘𝑆) ↔ 𝐹:(Base‘(mulGrp‘𝑅))⟶(Base‘(mulGrp‘𝑆))))
1913, 18mpbid 147 . . . . 5 (𝜑𝐹:(Base‘(mulGrp‘𝑅))⟶(Base‘(mulGrp‘𝑆)))
20 isrhmd.ht . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) × (𝐹𝑦)))
2120ralrimivva 2576 . . . . . 6 (𝜑 → ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) × (𝐹𝑦)))
22 isrhmd.t . . . . . . . . . . . . 13 · = (.r𝑅)
234, 22mgpplusgg 13420 . . . . . . . . . . . 12 (𝑅 ∈ Ring → · = (+g‘(mulGrp‘𝑅)))
241, 23syl 14 . . . . . . . . . . 11 (𝜑· = (+g‘(mulGrp‘𝑅)))
2524oveqd 5935 . . . . . . . . . 10 (𝜑 → (𝑥 · 𝑦) = (𝑥(+g‘(mulGrp‘𝑅))𝑦))
2625fveq2d 5558 . . . . . . . . 9 (𝜑 → (𝐹‘(𝑥 · 𝑦)) = (𝐹‘(𝑥(+g‘(mulGrp‘𝑅))𝑦)))
27 isrhmd.u . . . . . . . . . . . 12 × = (.r𝑆)
287, 27mgpplusgg 13420 . . . . . . . . . . 11 (𝑆 ∈ Ring → × = (+g‘(mulGrp‘𝑆)))
292, 28syl 14 . . . . . . . . . 10 (𝜑× = (+g‘(mulGrp‘𝑆)))
3029oveqd 5935 . . . . . . . . 9 (𝜑 → ((𝐹𝑥) × (𝐹𝑦)) = ((𝐹𝑥)(+g‘(mulGrp‘𝑆))(𝐹𝑦)))
3126, 30eqeq12d 2208 . . . . . . . 8 (𝜑 → ((𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) × (𝐹𝑦)) ↔ (𝐹‘(𝑥(+g‘(mulGrp‘𝑅))𝑦)) = ((𝐹𝑥)(+g‘(mulGrp‘𝑆))(𝐹𝑦))))
3215, 31raleqbidv 2706 . . . . . . 7 (𝜑 → (∀𝑦𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) × (𝐹𝑦)) ↔ ∀𝑦 ∈ (Base‘(mulGrp‘𝑅))(𝐹‘(𝑥(+g‘(mulGrp‘𝑅))𝑦)) = ((𝐹𝑥)(+g‘(mulGrp‘𝑆))(𝐹𝑦))))
3315, 32raleqbidv 2706 . . . . . 6 (𝜑 → (∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) × (𝐹𝑦)) ↔ ∀𝑥 ∈ (Base‘(mulGrp‘𝑅))∀𝑦 ∈ (Base‘(mulGrp‘𝑅))(𝐹‘(𝑥(+g‘(mulGrp‘𝑅))𝑦)) = ((𝐹𝑥)(+g‘(mulGrp‘𝑆))(𝐹𝑦))))
3421, 33mpbid 147 . . . . 5 (𝜑 → ∀𝑥 ∈ (Base‘(mulGrp‘𝑅))∀𝑦 ∈ (Base‘(mulGrp‘𝑅))(𝐹‘(𝑥(+g‘(mulGrp‘𝑅))𝑦)) = ((𝐹𝑥)(+g‘(mulGrp‘𝑆))(𝐹𝑦)))
35 isrhmd.ho . . . . . 6 (𝜑 → (𝐹1 ) = 𝑁)
36 isrhmd.o . . . . . . . . 9 1 = (1r𝑅)
374, 36ringidvalg 13457 . . . . . . . 8 (𝑅 ∈ Ring → 1 = (0g‘(mulGrp‘𝑅)))
381, 37syl 14 . . . . . . 7 (𝜑1 = (0g‘(mulGrp‘𝑅)))
3938fveq2d 5558 . . . . . 6 (𝜑 → (𝐹1 ) = (𝐹‘(0g‘(mulGrp‘𝑅))))
40 isrhmd.n . . . . . . . 8 𝑁 = (1r𝑆)
417, 40ringidvalg 13457 . . . . . . 7 (𝑆 ∈ Ring → 𝑁 = (0g‘(mulGrp‘𝑆)))
422, 41syl 14 . . . . . 6 (𝜑𝑁 = (0g‘(mulGrp‘𝑆)))
4335, 39, 423eqtr3d 2234 . . . . 5 (𝜑 → (𝐹‘(0g‘(mulGrp‘𝑅))) = (0g‘(mulGrp‘𝑆)))
4419, 34, 433jca 1179 . . . 4 (𝜑 → (𝐹:(Base‘(mulGrp‘𝑅))⟶(Base‘(mulGrp‘𝑆)) ∧ ∀𝑥 ∈ (Base‘(mulGrp‘𝑅))∀𝑦 ∈ (Base‘(mulGrp‘𝑅))(𝐹‘(𝑥(+g‘(mulGrp‘𝑅))𝑦)) = ((𝐹𝑥)(+g‘(mulGrp‘𝑆))(𝐹𝑦)) ∧ (𝐹‘(0g‘(mulGrp‘𝑅))) = (0g‘(mulGrp‘𝑆))))
45 eqid 2193 . . . . 5 (Base‘(mulGrp‘𝑅)) = (Base‘(mulGrp‘𝑅))
46 eqid 2193 . . . . 5 (Base‘(mulGrp‘𝑆)) = (Base‘(mulGrp‘𝑆))
47 eqid 2193 . . . . 5 (+g‘(mulGrp‘𝑅)) = (+g‘(mulGrp‘𝑅))
48 eqid 2193 . . . . 5 (+g‘(mulGrp‘𝑆)) = (+g‘(mulGrp‘𝑆))
49 eqid 2193 . . . . 5 (0g‘(mulGrp‘𝑅)) = (0g‘(mulGrp‘𝑅))
50 eqid 2193 . . . . 5 (0g‘(mulGrp‘𝑆)) = (0g‘(mulGrp‘𝑆))
5145, 46, 47, 48, 49, 50ismhm 13033 . . . 4 (𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)) ↔ (((mulGrp‘𝑅) ∈ Mnd ∧ (mulGrp‘𝑆) ∈ Mnd) ∧ (𝐹:(Base‘(mulGrp‘𝑅))⟶(Base‘(mulGrp‘𝑆)) ∧ ∀𝑥 ∈ (Base‘(mulGrp‘𝑅))∀𝑦 ∈ (Base‘(mulGrp‘𝑅))(𝐹‘(𝑥(+g‘(mulGrp‘𝑅))𝑦)) = ((𝐹𝑥)(+g‘(mulGrp‘𝑆))(𝐹𝑦)) ∧ (𝐹‘(0g‘(mulGrp‘𝑅))) = (0g‘(mulGrp‘𝑆)))))
526, 9, 44, 51syl21anbrc 1184 . . 3 (𝜑𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)))
533, 52jca 306 . 2 (𝜑 → (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆))))
544, 7isrhm 13654 . 2 (𝐹 ∈ (𝑅 RingHom 𝑆) ↔ ((𝑅 ∈ Ring ∧ 𝑆 ∈ Ring) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)))))
551, 2, 53, 54syl21anbrc 1184 1 (𝜑𝐹 ∈ (𝑅 RingHom 𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2164  wral 2472  wf 5250  cfv 5254  (class class class)co 5918  Basecbs 12618  +gcplusg 12695  .rcmulr 12696  0gc0g 12867  Mndcmnd 12997   MndHom cmhm 13029   GrpHom cghm 13310  mulGrpcmgp 13416  1rcur 13455  Ringcrg 13492   RingHom crh 13646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-pre-ltirr 7984  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-map 6704  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-inn 8983  df-2 9041  df-3 9042  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-plusg 12708  df-mulr 12709  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-mhm 13031  df-grp 13075  df-ghm 13311  df-mgp 13417  df-ur 13456  df-ring 13494  df-rhm 13648
This theorem is referenced by:  isrhmd  13662  rhmopp  13672  qusrhm  14024  mulgrhm  14097
  Copyright terms: Public domain W3C validator