ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lspsneq0b GIF version

Theorem lspsneq0b 14385
Description: Equal singleton spans imply both arguments are zero or both are nonzero. (Contributed by NM, 21-Mar-2015.)
Hypotheses
Ref Expression
lspsneq0b.v 𝑉 = (Base‘𝑊)
lspsneq0b.o 0 = (0g𝑊)
lspsneq0b.n 𝑁 = (LSpan‘𝑊)
lspsneq0b.w (𝜑𝑊 ∈ LMod)
lspsneq0b.x (𝜑𝑋𝑉)
lspsneq0b.y (𝜑𝑌𝑉)
lspsneq0b.e (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{𝑌}))
Assertion
Ref Expression
lspsneq0b (𝜑 → (𝑋 = 0𝑌 = 0 ))

Proof of Theorem lspsneq0b
StepHypRef Expression
1 lspsneq0b.e . . . . 5 (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{𝑌}))
21adantr 276 . . . 4 ((𝜑𝑋 = 0 ) → (𝑁‘{𝑋}) = (𝑁‘{𝑌}))
3 lspsneq0b.w . . . . . 6 (𝜑𝑊 ∈ LMod)
4 lspsneq0b.x . . . . . 6 (𝜑𝑋𝑉)
5 lspsneq0b.v . . . . . . 7 𝑉 = (Base‘𝑊)
6 lspsneq0b.o . . . . . . 7 0 = (0g𝑊)
7 lspsneq0b.n . . . . . . 7 𝑁 = (LSpan‘𝑊)
85, 6, 7lspsneq0 14384 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((𝑁‘{𝑋}) = { 0 } ↔ 𝑋 = 0 ))
93, 4, 8syl2anc 411 . . . . 5 (𝜑 → ((𝑁‘{𝑋}) = { 0 } ↔ 𝑋 = 0 ))
109biimpar 297 . . . 4 ((𝜑𝑋 = 0 ) → (𝑁‘{𝑋}) = { 0 })
112, 10eqtr3d 2264 . . 3 ((𝜑𝑋 = 0 ) → (𝑁‘{𝑌}) = { 0 })
12 lspsneq0b.y . . . . 5 (𝜑𝑌𝑉)
135, 6, 7lspsneq0 14384 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → ((𝑁‘{𝑌}) = { 0 } ↔ 𝑌 = 0 ))
143, 12, 13syl2anc 411 . . . 4 (𝜑 → ((𝑁‘{𝑌}) = { 0 } ↔ 𝑌 = 0 ))
1514adantr 276 . . 3 ((𝜑𝑋 = 0 ) → ((𝑁‘{𝑌}) = { 0 } ↔ 𝑌 = 0 ))
1611, 15mpbid 147 . 2 ((𝜑𝑋 = 0 ) → 𝑌 = 0 )
171adantr 276 . . . 4 ((𝜑𝑌 = 0 ) → (𝑁‘{𝑋}) = (𝑁‘{𝑌}))
1814biimpar 297 . . . 4 ((𝜑𝑌 = 0 ) → (𝑁‘{𝑌}) = { 0 })
1917, 18eqtrd 2262 . . 3 ((𝜑𝑌 = 0 ) → (𝑁‘{𝑋}) = { 0 })
209adantr 276 . . 3 ((𝜑𝑌 = 0 ) → ((𝑁‘{𝑋}) = { 0 } ↔ 𝑋 = 0 ))
2119, 20mpbid 147 . 2 ((𝜑𝑌 = 0 ) → 𝑋 = 0 )
2216, 21impbida 598 1 (𝜑 → (𝑋 = 0𝑌 = 0 ))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  {csn 3666  cfv 5317  Basecbs 13027  0gc0g 13284  LModclmod 14245  LSpanclspn 14344
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-pre-ltirr 8107  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-pnf 8179  df-mnf 8180  df-ltxr 8182  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-5 9168  df-6 9169  df-ndx 13030  df-slot 13031  df-base 13033  df-sets 13034  df-plusg 13118  df-mulr 13119  df-sca 13121  df-vsca 13122  df-0g 13286  df-mgm 13384  df-sgrp 13430  df-mnd 13445  df-grp 13531  df-mgp 13879  df-ring 13956  df-lmod 14247  df-lssm 14311  df-lsp 14345
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator