![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lspsneq0b | GIF version |
Description: Equal singleton spans imply both arguments are zero or both are nonzero. (Contributed by NM, 21-Mar-2015.) |
Ref | Expression |
---|---|
lspsneq0b.v | ⊢ 𝑉 = (Base‘𝑊) |
lspsneq0b.o | ⊢ 0 = (0g‘𝑊) |
lspsneq0b.n | ⊢ 𝑁 = (LSpan‘𝑊) |
lspsneq0b.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
lspsneq0b.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
lspsneq0b.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
lspsneq0b.e | ⊢ (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{𝑌})) |
Ref | Expression |
---|---|
lspsneq0b | ⊢ (𝜑 → (𝑋 = 0 ↔ 𝑌 = 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lspsneq0b.e | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{𝑌})) | |
2 | 1 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = 0 ) → (𝑁‘{𝑋}) = (𝑁‘{𝑌})) |
3 | lspsneq0b.w | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
4 | lspsneq0b.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
5 | lspsneq0b.v | . . . . . . 7 ⊢ 𝑉 = (Base‘𝑊) | |
6 | lspsneq0b.o | . . . . . . 7 ⊢ 0 = (0g‘𝑊) | |
7 | lspsneq0b.n | . . . . . . 7 ⊢ 𝑁 = (LSpan‘𝑊) | |
8 | 5, 6, 7 | lspsneq0 13922 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ((𝑁‘{𝑋}) = { 0 } ↔ 𝑋 = 0 )) |
9 | 3, 4, 8 | syl2anc 411 | . . . . 5 ⊢ (𝜑 → ((𝑁‘{𝑋}) = { 0 } ↔ 𝑋 = 0 )) |
10 | 9 | biimpar 297 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = 0 ) → (𝑁‘{𝑋}) = { 0 }) |
11 | 2, 10 | eqtr3d 2228 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 0 ) → (𝑁‘{𝑌}) = { 0 }) |
12 | lspsneq0b.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
13 | 5, 6, 7 | lspsneq0 13922 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) → ((𝑁‘{𝑌}) = { 0 } ↔ 𝑌 = 0 )) |
14 | 3, 12, 13 | syl2anc 411 | . . . 4 ⊢ (𝜑 → ((𝑁‘{𝑌}) = { 0 } ↔ 𝑌 = 0 )) |
15 | 14 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 0 ) → ((𝑁‘{𝑌}) = { 0 } ↔ 𝑌 = 0 )) |
16 | 11, 15 | mpbid 147 | . 2 ⊢ ((𝜑 ∧ 𝑋 = 0 ) → 𝑌 = 0 ) |
17 | 1 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 = 0 ) → (𝑁‘{𝑋}) = (𝑁‘{𝑌})) |
18 | 14 | biimpar 297 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 = 0 ) → (𝑁‘{𝑌}) = { 0 }) |
19 | 17, 18 | eqtrd 2226 | . . 3 ⊢ ((𝜑 ∧ 𝑌 = 0 ) → (𝑁‘{𝑋}) = { 0 }) |
20 | 9 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ 𝑌 = 0 ) → ((𝑁‘{𝑋}) = { 0 } ↔ 𝑋 = 0 )) |
21 | 19, 20 | mpbid 147 | . 2 ⊢ ((𝜑 ∧ 𝑌 = 0 ) → 𝑋 = 0 ) |
22 | 16, 21 | impbida 596 | 1 ⊢ (𝜑 → (𝑋 = 0 ↔ 𝑌 = 0 )) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2164 {csn 3618 ‘cfv 5254 Basecbs 12618 0gc0g 12867 LModclmod 13783 LSpanclspn 13882 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-addass 7974 ax-i2m1 7977 ax-0lt1 7978 ax-0id 7980 ax-rnegex 7981 ax-pre-ltirr 7984 ax-pre-ltadd 7988 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-pnf 8056 df-mnf 8057 df-ltxr 8059 df-inn 8983 df-2 9041 df-3 9042 df-4 9043 df-5 9044 df-6 9045 df-ndx 12621 df-slot 12622 df-base 12624 df-sets 12625 df-plusg 12708 df-mulr 12709 df-sca 12711 df-vsca 12712 df-0g 12869 df-mgm 12939 df-sgrp 12985 df-mnd 12998 df-grp 13075 df-mgp 13417 df-ring 13494 df-lmod 13785 df-lssm 13849 df-lsp 13883 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |