![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lspsneq0b | GIF version |
Description: Equal singleton spans imply both arguments are zero or both are nonzero. (Contributed by NM, 21-Mar-2015.) |
Ref | Expression |
---|---|
lspsneq0b.v | ⊢ 𝑉 = (Base‘𝑊) |
lspsneq0b.o | ⊢ 0 = (0g‘𝑊) |
lspsneq0b.n | ⊢ 𝑁 = (LSpan‘𝑊) |
lspsneq0b.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
lspsneq0b.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
lspsneq0b.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
lspsneq0b.e | ⊢ (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{𝑌})) |
Ref | Expression |
---|---|
lspsneq0b | ⊢ (𝜑 → (𝑋 = 0 ↔ 𝑌 = 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lspsneq0b.e | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{𝑌})) | |
2 | 1 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = 0 ) → (𝑁‘{𝑋}) = (𝑁‘{𝑌})) |
3 | lspsneq0b.w | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
4 | lspsneq0b.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
5 | lspsneq0b.v | . . . . . . 7 ⊢ 𝑉 = (Base‘𝑊) | |
6 | lspsneq0b.o | . . . . . . 7 ⊢ 0 = (0g‘𝑊) | |
7 | lspsneq0b.n | . . . . . . 7 ⊢ 𝑁 = (LSpan‘𝑊) | |
8 | 5, 6, 7 | lspsneq0 13739 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ((𝑁‘{𝑋}) = { 0 } ↔ 𝑋 = 0 )) |
9 | 3, 4, 8 | syl2anc 411 | . . . . 5 ⊢ (𝜑 → ((𝑁‘{𝑋}) = { 0 } ↔ 𝑋 = 0 )) |
10 | 9 | biimpar 297 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = 0 ) → (𝑁‘{𝑋}) = { 0 }) |
11 | 2, 10 | eqtr3d 2224 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 0 ) → (𝑁‘{𝑌}) = { 0 }) |
12 | lspsneq0b.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
13 | 5, 6, 7 | lspsneq0 13739 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) → ((𝑁‘{𝑌}) = { 0 } ↔ 𝑌 = 0 )) |
14 | 3, 12, 13 | syl2anc 411 | . . . 4 ⊢ (𝜑 → ((𝑁‘{𝑌}) = { 0 } ↔ 𝑌 = 0 )) |
15 | 14 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 0 ) → ((𝑁‘{𝑌}) = { 0 } ↔ 𝑌 = 0 )) |
16 | 11, 15 | mpbid 147 | . 2 ⊢ ((𝜑 ∧ 𝑋 = 0 ) → 𝑌 = 0 ) |
17 | 1 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 = 0 ) → (𝑁‘{𝑋}) = (𝑁‘{𝑌})) |
18 | 14 | biimpar 297 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 = 0 ) → (𝑁‘{𝑌}) = { 0 }) |
19 | 17, 18 | eqtrd 2222 | . . 3 ⊢ ((𝜑 ∧ 𝑌 = 0 ) → (𝑁‘{𝑋}) = { 0 }) |
20 | 9 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ 𝑌 = 0 ) → ((𝑁‘{𝑋}) = { 0 } ↔ 𝑋 = 0 )) |
21 | 19, 20 | mpbid 147 | . 2 ⊢ ((𝜑 ∧ 𝑌 = 0 ) → 𝑋 = 0 ) |
22 | 16, 21 | impbida 596 | 1 ⊢ (𝜑 → (𝑋 = 0 ↔ 𝑌 = 0 )) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2160 {csn 3607 ‘cfv 5235 Basecbs 12511 0gc0g 12758 LModclmod 13600 LSpanclspn 13699 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-setind 4554 ax-cnex 7931 ax-resscn 7932 ax-1cn 7933 ax-1re 7934 ax-icn 7935 ax-addcl 7936 ax-addrcl 7937 ax-mulcl 7938 ax-addcom 7940 ax-addass 7942 ax-i2m1 7945 ax-0lt1 7946 ax-0id 7948 ax-rnegex 7949 ax-pre-ltirr 7952 ax-pre-ltadd 7956 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4311 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-ima 4657 df-iota 5196 df-fun 5237 df-fn 5238 df-f 5239 df-f1 5240 df-fo 5241 df-f1o 5242 df-fv 5243 df-riota 5851 df-ov 5898 df-oprab 5899 df-mpo 5900 df-pnf 8023 df-mnf 8024 df-ltxr 8026 df-inn 8949 df-2 9007 df-3 9008 df-4 9009 df-5 9010 df-6 9011 df-ndx 12514 df-slot 12515 df-base 12517 df-sets 12518 df-plusg 12599 df-mulr 12600 df-sca 12602 df-vsca 12603 df-0g 12760 df-mgm 12829 df-sgrp 12862 df-mnd 12875 df-grp 12945 df-mgp 13272 df-ring 13349 df-lmod 13602 df-lssm 13666 df-lsp 13700 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |