![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lidlacl | GIF version |
Description: An ideal is closed under addition. (Contributed by Stefan O'Rear, 3-Jan-2015.) |
Ref | Expression |
---|---|
lidlcl.u | β’ π = (LIdealβπ ) |
lidlacl.p | β’ + = (+gβπ ) |
Ref | Expression |
---|---|
lidlacl | β’ (((π β Ring β§ πΌ β π) β§ (π β πΌ β§ π β πΌ)) β (π + π) β πΌ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lidlacl.p | . . . . 5 β’ + = (+gβπ ) | |
2 | rlmplusgg 13740 | . . . . 5 β’ (π β Ring β (+gβπ ) = (+gβ(ringLModβπ ))) | |
3 | 1, 2 | eqtrid 2234 | . . . 4 β’ (π β Ring β + = (+gβ(ringLModβπ ))) |
4 | 3 | oveqd 5909 | . . 3 β’ (π β Ring β (π + π) = (π(+gβ(ringLModβπ ))π)) |
5 | 4 | ad2antrr 488 | . 2 β’ (((π β Ring β§ πΌ β π) β§ (π β πΌ β§ π β πΌ)) β (π + π) = (π(+gβ(ringLModβπ ))π)) |
6 | rlmlmod 13748 | . . . . 5 β’ (π β Ring β (ringLModβπ ) β LMod) | |
7 | 6 | adantr 276 | . . . 4 β’ ((π β Ring β§ πΌ β π) β (ringLModβπ ) β LMod) |
8 | simpr 110 | . . . . 5 β’ ((π β Ring β§ πΌ β π) β πΌ β π) | |
9 | lidlcl.u | . . . . . . 7 β’ π = (LIdealβπ ) | |
10 | lidlvalg 13755 | . . . . . . 7 β’ (π β Ring β (LIdealβπ ) = (LSubSpβ(ringLModβπ ))) | |
11 | 9, 10 | eqtrid 2234 | . . . . . 6 β’ (π β Ring β π = (LSubSpβ(ringLModβπ ))) |
12 | 11 | adantr 276 | . . . . 5 β’ ((π β Ring β§ πΌ β π) β π = (LSubSpβ(ringLModβπ ))) |
13 | 8, 12 | eleqtrd 2268 | . . . 4 β’ ((π β Ring β§ πΌ β π) β πΌ β (LSubSpβ(ringLModβπ ))) |
14 | 7, 13 | jca 306 | . . 3 β’ ((π β Ring β§ πΌ β π) β ((ringLModβπ ) β LMod β§ πΌ β (LSubSpβ(ringLModβπ )))) |
15 | eqid 2189 | . . . 4 β’ (+gβ(ringLModβπ )) = (+gβ(ringLModβπ )) | |
16 | eqid 2189 | . . . 4 β’ (LSubSpβ(ringLModβπ )) = (LSubSpβ(ringLModβπ )) | |
17 | 15, 16 | lssvacl 13649 | . . 3 β’ ((((ringLModβπ ) β LMod β§ πΌ β (LSubSpβ(ringLModβπ ))) β§ (π β πΌ β§ π β πΌ)) β (π(+gβ(ringLModβπ ))π) β πΌ) |
18 | 14, 17 | sylan 283 | . 2 β’ (((π β Ring β§ πΌ β π) β§ (π β πΌ β§ π β πΌ)) β (π(+gβ(ringLModβπ ))π) β πΌ) |
19 | 5, 18 | eqeltrd 2266 | 1 β’ (((π β Ring β§ πΌ β π) β§ (π β πΌ β§ π β πΌ)) β (π + π) β πΌ) |
Colors of variables: wff set class |
Syntax hints: β wi 4 β§ wa 104 = wceq 1364 β wcel 2160 βcfv 5232 (class class class)co 5892 +gcplusg 12562 Ringcrg 13318 LModclmod 13571 LSubSpclss 13636 ringLModcrglmod 13718 LIdealclidl 13751 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-pow 4189 ax-pr 4224 ax-un 4448 ax-setind 4551 ax-cnex 7922 ax-resscn 7923 ax-1cn 7924 ax-1re 7925 ax-icn 7926 ax-addcl 7927 ax-addrcl 7928 ax-mulcl 7929 ax-addcom 7931 ax-addass 7933 ax-i2m1 7936 ax-0lt1 7937 ax-0id 7939 ax-rnegex 7940 ax-pre-ltirr 7943 ax-pre-lttrn 7945 ax-pre-ltadd 7947 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4308 df-xp 4647 df-rel 4648 df-cnv 4649 df-co 4650 df-dm 4651 df-rn 4652 df-res 4653 df-ima 4654 df-iota 5193 df-fun 5234 df-fn 5235 df-f 5236 df-f1 5237 df-fo 5238 df-f1o 5239 df-fv 5240 df-riota 5848 df-ov 5895 df-oprab 5896 df-mpo 5897 df-pnf 8014 df-mnf 8015 df-ltxr 8017 df-inn 8940 df-2 8998 df-3 8999 df-4 9000 df-5 9001 df-6 9002 df-7 9003 df-8 9004 df-ndx 12490 df-slot 12491 df-base 12493 df-sets 12494 df-iress 12495 df-plusg 12575 df-mulr 12576 df-sca 12578 df-vsca 12579 df-ip 12580 df-0g 12736 df-mgm 12805 df-sgrp 12838 df-mnd 12851 df-grp 12921 df-minusg 12922 df-subg 13082 df-mgp 13243 df-ur 13282 df-ring 13320 df-subrg 13534 df-lmod 13573 df-lssm 13637 df-sra 13719 df-rgmod 13720 df-lidl 13753 |
This theorem is referenced by: lidlsubg 13770 |
Copyright terms: Public domain | W3C validator |