![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lidlacl | GIF version |
Description: An ideal is closed under addition. (Contributed by Stefan O'Rear, 3-Jan-2015.) |
Ref | Expression |
---|---|
lidlcl.u | ⊢ 𝑈 = (LIdeal‘𝑅) |
lidlacl.p | ⊢ + = (+g‘𝑅) |
Ref | Expression |
---|---|
lidlacl | ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) ∧ (𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝐼)) → (𝑋 + 𝑌) ∈ 𝐼) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lidlacl.p | . . . . 5 ⊢ + = (+g‘𝑅) | |
2 | rlmplusgg 13797 | . . . . 5 ⊢ (𝑅 ∈ Ring → (+g‘𝑅) = (+g‘(ringLMod‘𝑅))) | |
3 | 1, 2 | eqtrid 2234 | . . . 4 ⊢ (𝑅 ∈ Ring → + = (+g‘(ringLMod‘𝑅))) |
4 | 3 | oveqd 5917 | . . 3 ⊢ (𝑅 ∈ Ring → (𝑋 + 𝑌) = (𝑋(+g‘(ringLMod‘𝑅))𝑌)) |
5 | 4 | ad2antrr 488 | . 2 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) ∧ (𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝐼)) → (𝑋 + 𝑌) = (𝑋(+g‘(ringLMod‘𝑅))𝑌)) |
6 | rlmlmod 13805 | . . . . 5 ⊢ (𝑅 ∈ Ring → (ringLMod‘𝑅) ∈ LMod) | |
7 | 6 | adantr 276 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → (ringLMod‘𝑅) ∈ LMod) |
8 | simpr 110 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → 𝐼 ∈ 𝑈) | |
9 | lidlcl.u | . . . . . . 7 ⊢ 𝑈 = (LIdeal‘𝑅) | |
10 | lidlvalg 13812 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → (LIdeal‘𝑅) = (LSubSp‘(ringLMod‘𝑅))) | |
11 | 9, 10 | eqtrid 2234 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑈 = (LSubSp‘(ringLMod‘𝑅))) |
12 | 11 | adantr 276 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → 𝑈 = (LSubSp‘(ringLMod‘𝑅))) |
13 | 8, 12 | eleqtrd 2268 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → 𝐼 ∈ (LSubSp‘(ringLMod‘𝑅))) |
14 | 7, 13 | jca 306 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → ((ringLMod‘𝑅) ∈ LMod ∧ 𝐼 ∈ (LSubSp‘(ringLMod‘𝑅)))) |
15 | eqid 2189 | . . . 4 ⊢ (+g‘(ringLMod‘𝑅)) = (+g‘(ringLMod‘𝑅)) | |
16 | eqid 2189 | . . . 4 ⊢ (LSubSp‘(ringLMod‘𝑅)) = (LSubSp‘(ringLMod‘𝑅)) | |
17 | 15, 16 | lssvacl 13706 | . . 3 ⊢ ((((ringLMod‘𝑅) ∈ LMod ∧ 𝐼 ∈ (LSubSp‘(ringLMod‘𝑅))) ∧ (𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝐼)) → (𝑋(+g‘(ringLMod‘𝑅))𝑌) ∈ 𝐼) |
18 | 14, 17 | sylan 283 | . 2 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) ∧ (𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝐼)) → (𝑋(+g‘(ringLMod‘𝑅))𝑌) ∈ 𝐼) |
19 | 5, 18 | eqeltrd 2266 | 1 ⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) ∧ (𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝐼)) → (𝑋 + 𝑌) ∈ 𝐼) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2160 ‘cfv 5238 (class class class)co 5900 +gcplusg 12600 Ringcrg 13375 LModclmod 13628 LSubSpclss 13693 ringLModcrglmod 13775 LIdealclidl 13808 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4136 ax-sep 4139 ax-pow 4195 ax-pr 4230 ax-un 4454 ax-setind 4557 ax-cnex 7937 ax-resscn 7938 ax-1cn 7939 ax-1re 7940 ax-icn 7941 ax-addcl 7942 ax-addrcl 7943 ax-mulcl 7944 ax-addcom 7946 ax-addass 7948 ax-i2m1 7951 ax-0lt1 7952 ax-0id 7954 ax-rnegex 7955 ax-pre-ltirr 7958 ax-pre-lttrn 7960 ax-pre-ltadd 7962 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-pw 3595 df-sn 3616 df-pr 3617 df-op 3619 df-uni 3828 df-int 3863 df-iun 3906 df-br 4022 df-opab 4083 df-mpt 4084 df-id 4314 df-xp 4653 df-rel 4654 df-cnv 4655 df-co 4656 df-dm 4657 df-rn 4658 df-res 4659 df-ima 4660 df-iota 5199 df-fun 5240 df-fn 5241 df-f 5242 df-f1 5243 df-fo 5244 df-f1o 5245 df-fv 5246 df-riota 5855 df-ov 5903 df-oprab 5904 df-mpo 5905 df-pnf 8029 df-mnf 8030 df-ltxr 8032 df-inn 8955 df-2 9013 df-3 9014 df-4 9015 df-5 9016 df-6 9017 df-7 9018 df-8 9019 df-ndx 12526 df-slot 12527 df-base 12529 df-sets 12530 df-iress 12531 df-plusg 12613 df-mulr 12614 df-sca 12616 df-vsca 12617 df-ip 12618 df-0g 12774 df-mgm 12843 df-sgrp 12888 df-mnd 12901 df-grp 12971 df-minusg 12972 df-subg 13134 df-mgp 13300 df-ur 13339 df-ring 13377 df-subrg 13591 df-lmod 13630 df-lssm 13694 df-sra 13776 df-rgmod 13777 df-lidl 13810 |
This theorem is referenced by: lidlsubg 13827 |
Copyright terms: Public domain | W3C validator |