ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lidlacl GIF version

Theorem lidlacl 14290
Description: An ideal is closed under addition. (Contributed by Stefan O'Rear, 3-Jan-2015.)
Hypotheses
Ref Expression
lidlcl.u 𝑈 = (LIdeal‘𝑅)
lidlacl.p + = (+g𝑅)
Assertion
Ref Expression
lidlacl (((𝑅 ∈ Ring ∧ 𝐼𝑈) ∧ (𝑋𝐼𝑌𝐼)) → (𝑋 + 𝑌) ∈ 𝐼)

Proof of Theorem lidlacl
StepHypRef Expression
1 lidlacl.p . . . . 5 + = (+g𝑅)
2 rlmplusgg 14262 . . . . 5 (𝑅 ∈ Ring → (+g𝑅) = (+g‘(ringLMod‘𝑅)))
31, 2eqtrid 2251 . . . 4 (𝑅 ∈ Ring → + = (+g‘(ringLMod‘𝑅)))
43oveqd 5968 . . 3 (𝑅 ∈ Ring → (𝑋 + 𝑌) = (𝑋(+g‘(ringLMod‘𝑅))𝑌))
54ad2antrr 488 . 2 (((𝑅 ∈ Ring ∧ 𝐼𝑈) ∧ (𝑋𝐼𝑌𝐼)) → (𝑋 + 𝑌) = (𝑋(+g‘(ringLMod‘𝑅))𝑌))
6 rlmlmod 14270 . . . . 5 (𝑅 ∈ Ring → (ringLMod‘𝑅) ∈ LMod)
76adantr 276 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑈) → (ringLMod‘𝑅) ∈ LMod)
8 simpr 110 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑈) → 𝐼𝑈)
9 lidlcl.u . . . . . . 7 𝑈 = (LIdeal‘𝑅)
10 lidlvalg 14277 . . . . . . 7 (𝑅 ∈ Ring → (LIdeal‘𝑅) = (LSubSp‘(ringLMod‘𝑅)))
119, 10eqtrid 2251 . . . . . 6 (𝑅 ∈ Ring → 𝑈 = (LSubSp‘(ringLMod‘𝑅)))
1211adantr 276 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑈) → 𝑈 = (LSubSp‘(ringLMod‘𝑅)))
138, 12eleqtrd 2285 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑈) → 𝐼 ∈ (LSubSp‘(ringLMod‘𝑅)))
147, 13jca 306 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑈) → ((ringLMod‘𝑅) ∈ LMod ∧ 𝐼 ∈ (LSubSp‘(ringLMod‘𝑅))))
15 eqid 2206 . . . 4 (+g‘(ringLMod‘𝑅)) = (+g‘(ringLMod‘𝑅))
16 eqid 2206 . . . 4 (LSubSp‘(ringLMod‘𝑅)) = (LSubSp‘(ringLMod‘𝑅))
1715, 16lssvacl 14171 . . 3 ((((ringLMod‘𝑅) ∈ LMod ∧ 𝐼 ∈ (LSubSp‘(ringLMod‘𝑅))) ∧ (𝑋𝐼𝑌𝐼)) → (𝑋(+g‘(ringLMod‘𝑅))𝑌) ∈ 𝐼)
1814, 17sylan 283 . 2 (((𝑅 ∈ Ring ∧ 𝐼𝑈) ∧ (𝑋𝐼𝑌𝐼)) → (𝑋(+g‘(ringLMod‘𝑅))𝑌) ∈ 𝐼)
195, 18eqeltrd 2283 1 (((𝑅 ∈ Ring ∧ 𝐼𝑈) ∧ (𝑋𝐼𝑌𝐼)) → (𝑋 + 𝑌) ∈ 𝐼)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177  cfv 5276  (class class class)co 5951  +gcplusg 12953  Ringcrg 13802  LModclmod 14093  LSubSpclss 14158  ringLModcrglmod 14240  LIdealclidl 14273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-addcom 8032  ax-addass 8034  ax-i2m1 8037  ax-0lt1 8038  ax-0id 8040  ax-rnegex 8041  ax-pre-ltirr 8044  ax-pre-lttrn 8046  ax-pre-ltadd 8048
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-pnf 8116  df-mnf 8117  df-ltxr 8119  df-inn 9044  df-2 9102  df-3 9103  df-4 9104  df-5 9105  df-6 9106  df-7 9107  df-8 9108  df-ndx 12879  df-slot 12880  df-base 12882  df-sets 12883  df-iress 12884  df-plusg 12966  df-mulr 12967  df-sca 12969  df-vsca 12970  df-ip 12971  df-0g 13134  df-mgm 13232  df-sgrp 13278  df-mnd 13293  df-grp 13379  df-minusg 13380  df-subg 13550  df-mgp 13727  df-ur 13766  df-ring 13804  df-subrg 14025  df-lmod 14095  df-lssm 14159  df-sra 14241  df-rgmod 14242  df-lidl 14275
This theorem is referenced by:  lidlsubg  14292
  Copyright terms: Public domain W3C validator