![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nngt0d | GIF version |
Description: A positive integer is positive. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
nnge1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℕ) |
Ref | Expression |
---|---|
nngt0d | ⊢ (𝜑 → 0 < 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnge1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℕ) | |
2 | nngt0 8603 | . 2 ⊢ (𝐴 ∈ ℕ → 0 < 𝐴) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 0 < 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 1448 class class class wbr 3875 0cc0 7500 < clt 7672 ℕcn 8578 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 584 ax-in2 585 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-13 1459 ax-14 1460 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 ax-sep 3986 ax-pow 4038 ax-pr 4069 ax-un 4293 ax-setind 4390 ax-cnex 7586 ax-resscn 7587 ax-1re 7589 ax-addrcl 7592 ax-0lt1 7601 ax-0id 7603 ax-rnegex 7604 ax-pre-ltirr 7607 ax-pre-ltwlin 7608 ax-pre-lttrn 7609 ax-pre-ltadd 7611 |
This theorem depends on definitions: df-bi 116 df-3an 932 df-tru 1302 df-fal 1305 df-nf 1405 df-sb 1704 df-eu 1963 df-mo 1964 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-ne 2268 df-nel 2363 df-ral 2380 df-rex 2381 df-rab 2384 df-v 2643 df-dif 3023 df-un 3025 df-in 3027 df-ss 3034 df-pw 3459 df-sn 3480 df-pr 3481 df-op 3483 df-uni 3684 df-int 3719 df-br 3876 df-opab 3930 df-xp 4483 df-cnv 4485 df-iota 5024 df-fv 5067 df-ov 5709 df-pnf 7674 df-mnf 7675 df-xr 7676 df-ltxr 7677 df-le 7678 df-inn 8579 |
This theorem is referenced by: flqdiv 9935 modqmulnn 9956 modifeq2int 10000 modaddmodup 10001 modaddmodlo 10002 modsumfzodifsn 10010 addmodlteq 10012 facubnd 10332 resqrexlemdecn 10624 modfsummodlemstep 11065 divcnv 11105 cvgratnnlemabsle 11135 efcllemp 11162 ege2le3 11175 eftlub 11194 eflegeo 11206 eirraplem 11278 dvdslelemd 11336 dvdsmod 11355 mulmoddvds 11356 divalgmod 11419 bezoutlemnewy 11477 bezoutlemstep 11478 sqgcd 11510 eucalglt 11531 qredeu 11571 prmind2 11594 nprm 11597 sqrt2irraplemnn 11649 divdenle 11667 qnumgt0 11668 hashdvds 11689 crth 11692 phimullem 11693 |
Copyright terms: Public domain | W3C validator |