Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nngt0d | GIF version |
Description: A positive integer is positive. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
nnge1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℕ) |
Ref | Expression |
---|---|
nngt0d | ⊢ (𝜑 → 0 < 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnge1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℕ) | |
2 | nngt0 8882 | . 2 ⊢ (𝐴 ∈ ℕ → 0 < 𝐴) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 0 < 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2136 class class class wbr 3982 0cc0 7753 < clt 7933 ℕcn 8857 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1re 7847 ax-addrcl 7850 ax-0lt1 7859 ax-0id 7861 ax-rnegex 7862 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-ltadd 7869 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-xp 4610 df-cnv 4612 df-iota 5153 df-fv 5196 df-ov 5845 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-inn 8858 |
This theorem is referenced by: flqdiv 10256 modqmulnn 10277 modifeq2int 10321 modaddmodup 10322 modaddmodlo 10323 modsumfzodifsn 10331 addmodlteq 10333 facubnd 10658 resqrexlemdecn 10954 modfsummodlemstep 11398 divcnv 11438 cvgratnnlemabsle 11468 fprodmodd 11582 efcllemp 11599 ege2le3 11612 eftlub 11631 eflegeo 11642 eirraplem 11717 dvdslelemd 11781 dvdsmod 11800 mulmoddvds 11801 divalgmod 11864 bezoutlemnewy 11929 bezoutlemstep 11930 sqgcd 11962 eucalglt 11989 qredeu 12029 prmind2 12052 nprm 12055 sqrt2irraplemnn 12111 divdenle 12129 qnumgt0 12130 hashdvds 12153 crth 12156 phimullem 12157 eulerthlema 12162 fermltl 12166 prmdiv 12167 prmdiveq 12168 odzdvds 12177 powm2modprm 12184 modprm0 12186 nnnn0modprm0 12187 pythagtriplem11 12206 pythagtriplem13 12208 pythagtriplem19 12214 pcadd 12271 pcfaclem 12279 qexpz 12282 pockthlem 12286 pockthg 12287 4sqlem5 12312 4sqlem6 12313 4sqlem10 12317 lgsvalmod 13560 lgsmod 13567 lgsdirprm 13575 2sqlem8 13599 |
Copyright terms: Public domain | W3C validator |