Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nngt0d | GIF version |
Description: A positive integer is positive. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
nnge1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℕ) |
Ref | Expression |
---|---|
nngt0d | ⊢ (𝜑 → 0 < 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnge1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℕ) | |
2 | nngt0 8903 | . 2 ⊢ (𝐴 ∈ ℕ → 0 < 𝐴) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → 0 < 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2141 class class class wbr 3989 0cc0 7774 < clt 7954 ℕcn 8878 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1re 7868 ax-addrcl 7871 ax-0lt1 7880 ax-0id 7882 ax-rnegex 7883 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-ltadd 7890 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-xp 4617 df-cnv 4619 df-iota 5160 df-fv 5206 df-ov 5856 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-inn 8879 |
This theorem is referenced by: flqdiv 10277 modqmulnn 10298 modifeq2int 10342 modaddmodup 10343 modaddmodlo 10344 modsumfzodifsn 10352 addmodlteq 10354 facubnd 10679 resqrexlemdecn 10976 modfsummodlemstep 11420 divcnv 11460 cvgratnnlemabsle 11490 fprodmodd 11604 efcllemp 11621 ege2le3 11634 eftlub 11653 eflegeo 11664 eirraplem 11739 dvdslelemd 11803 dvdsmod 11822 mulmoddvds 11823 divalgmod 11886 bezoutlemnewy 11951 bezoutlemstep 11952 sqgcd 11984 eucalglt 12011 qredeu 12051 prmind2 12074 nprm 12077 sqrt2irraplemnn 12133 divdenle 12151 qnumgt0 12152 hashdvds 12175 crth 12178 phimullem 12179 eulerthlema 12184 fermltl 12188 prmdiv 12189 prmdiveq 12190 odzdvds 12199 powm2modprm 12206 modprm0 12208 nnnn0modprm0 12209 pythagtriplem11 12228 pythagtriplem13 12230 pythagtriplem19 12236 pcadd 12293 pcfaclem 12301 qexpz 12304 pockthlem 12308 pockthg 12309 4sqlem5 12334 4sqlem6 12335 4sqlem10 12339 lgsvalmod 13714 lgsmod 13721 lgsdirprm 13729 2sqlem8 13753 |
Copyright terms: Public domain | W3C validator |