| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > zringcrng | GIF version | ||
| Description: The ring of integers is a commutative ring. (Contributed by AV, 13-Jun-2019.) |
| Ref | Expression |
|---|---|
| zringcrng | ⊢ ℤring ∈ CRing |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cncrng 14416 | . 2 ⊢ ℂfld ∈ CRing | |
| 2 | zsubrg 14428 | . 2 ⊢ ℤ ∈ (SubRing‘ℂfld) | |
| 3 | df-zring 14438 | . . 3 ⊢ ℤring = (ℂfld ↾s ℤ) | |
| 4 | 3 | subrgcrng 14072 | . 2 ⊢ ((ℂfld ∈ CRing ∧ ℤ ∈ (SubRing‘ℂfld)) → ℤring ∈ CRing) |
| 5 | 1, 2, 4 | mp2an 426 | 1 ⊢ ℤring ∈ CRing |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2177 ‘cfv 5285 ℤcz 9402 CRingccrg 13844 SubRingcsubrg 14064 ℂfldccnfld 14403 ℤringczring 14437 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4170 ax-sep 4173 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 ax-cnex 8046 ax-resscn 8047 ax-1cn 8048 ax-1re 8049 ax-icn 8050 ax-addcl 8051 ax-addrcl 8052 ax-mulcl 8053 ax-mulrcl 8054 ax-addcom 8055 ax-mulcom 8056 ax-addass 8057 ax-mulass 8058 ax-distr 8059 ax-i2m1 8060 ax-0lt1 8061 ax-1rid 8062 ax-0id 8063 ax-rnegex 8064 ax-precex 8065 ax-cnre 8066 ax-pre-ltirr 8067 ax-pre-ltwlin 8068 ax-pre-lttrn 8069 ax-pre-apti 8070 ax-pre-ltadd 8071 ax-pre-mulgt0 8072 ax-addf 8077 ax-mulf 8078 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-tp 3646 df-op 3647 df-uni 3860 df-int 3895 df-iun 3938 df-br 4055 df-opab 4117 df-mpt 4118 df-id 4353 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-f1 5290 df-fo 5291 df-f1o 5292 df-fv 5293 df-riota 5917 df-ov 5965 df-oprab 5966 df-mpo 5967 df-1st 6244 df-2nd 6245 df-pnf 8139 df-mnf 8140 df-xr 8141 df-ltxr 8142 df-le 8143 df-sub 8275 df-neg 8276 df-reap 8678 df-inn 9067 df-2 9125 df-3 9126 df-4 9127 df-5 9128 df-6 9129 df-7 9130 df-8 9131 df-9 9132 df-n0 9326 df-z 9403 df-dec 9535 df-uz 9679 df-rp 9806 df-fz 10161 df-cj 11238 df-abs 11395 df-struct 12919 df-ndx 12920 df-slot 12921 df-base 12923 df-sets 12924 df-iress 12925 df-plusg 13007 df-mulr 13008 df-starv 13009 df-tset 13013 df-ple 13014 df-ds 13016 df-unif 13017 df-0g 13175 df-topgen 13177 df-mgm 13273 df-sgrp 13319 df-mnd 13334 df-grp 13420 df-minusg 13421 df-subg 13591 df-cmn 13707 df-mgp 13768 df-ur 13807 df-ring 13845 df-cring 13846 df-subrg 14066 df-bl 14393 df-mopn 14394 df-fg 14396 df-metu 14397 df-cnfld 14404 df-zring 14438 |
| This theorem is referenced by: zringring 14440 zncrng2 14482 znzrh2 14493 |
| Copyright terms: Public domain | W3C validator |