![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > addlocprlemlt | GIF version |
Description: Lemma for addlocpr 7555. The 𝑄 <Q (𝐷 +Q 𝐸) case. (Contributed by Jim Kingdon, 6-Dec-2019.) |
Ref | Expression |
---|---|
addlocprlem.a | ⊢ (𝜑 → 𝐴 ∈ P) |
addlocprlem.b | ⊢ (𝜑 → 𝐵 ∈ P) |
addlocprlem.qr | ⊢ (𝜑 → 𝑄 <Q 𝑅) |
addlocprlem.p | ⊢ (𝜑 → 𝑃 ∈ Q) |
addlocprlem.qppr | ⊢ (𝜑 → (𝑄 +Q (𝑃 +Q 𝑃)) = 𝑅) |
addlocprlem.dlo | ⊢ (𝜑 → 𝐷 ∈ (1st ‘𝐴)) |
addlocprlem.uup | ⊢ (𝜑 → 𝑈 ∈ (2nd ‘𝐴)) |
addlocprlem.du | ⊢ (𝜑 → 𝑈 <Q (𝐷 +Q 𝑃)) |
addlocprlem.elo | ⊢ (𝜑 → 𝐸 ∈ (1st ‘𝐵)) |
addlocprlem.tup | ⊢ (𝜑 → 𝑇 ∈ (2nd ‘𝐵)) |
addlocprlem.et | ⊢ (𝜑 → 𝑇 <Q (𝐸 +Q 𝑃)) |
Ref | Expression |
---|---|
addlocprlemlt | ⊢ (𝜑 → (𝑄 <Q (𝐷 +Q 𝐸) → 𝑄 ∈ (1st ‘(𝐴 +P 𝐵)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addlocprlem.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ P) | |
2 | addlocprlem.dlo | . . 3 ⊢ (𝜑 → 𝐷 ∈ (1st ‘𝐴)) | |
3 | 1, 2 | jca 306 | . 2 ⊢ (𝜑 → (𝐴 ∈ P ∧ 𝐷 ∈ (1st ‘𝐴))) |
4 | addlocprlem.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ P) | |
5 | addlocprlem.elo | . . 3 ⊢ (𝜑 → 𝐸 ∈ (1st ‘𝐵)) | |
6 | 4, 5 | jca 306 | . 2 ⊢ (𝜑 → (𝐵 ∈ P ∧ 𝐸 ∈ (1st ‘𝐵))) |
7 | addlocprlem.qr | . . 3 ⊢ (𝜑 → 𝑄 <Q 𝑅) | |
8 | ltrelnq 7384 | . . . . 5 ⊢ <Q ⊆ (Q × Q) | |
9 | 8 | brel 4693 | . . . 4 ⊢ (𝑄 <Q 𝑅 → (𝑄 ∈ Q ∧ 𝑅 ∈ Q)) |
10 | 9 | simpld 112 | . . 3 ⊢ (𝑄 <Q 𝑅 → 𝑄 ∈ Q) |
11 | 7, 10 | syl 14 | . 2 ⊢ (𝜑 → 𝑄 ∈ Q) |
12 | addnqprl 7548 | . 2 ⊢ ((((𝐴 ∈ P ∧ 𝐷 ∈ (1st ‘𝐴)) ∧ (𝐵 ∈ P ∧ 𝐸 ∈ (1st ‘𝐵))) ∧ 𝑄 ∈ Q) → (𝑄 <Q (𝐷 +Q 𝐸) → 𝑄 ∈ (1st ‘(𝐴 +P 𝐵)))) | |
13 | 3, 6, 11, 12 | syl21anc 1248 | 1 ⊢ (𝜑 → (𝑄 <Q (𝐷 +Q 𝐸) → 𝑄 ∈ (1st ‘(𝐴 +P 𝐵)))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2160 class class class wbr 4018 ‘cfv 5232 (class class class)co 5892 1st c1st 6158 2nd c2nd 6159 Qcnq 7299 +Q cplq 7301 <Q cltq 7304 Pcnp 7310 +P cpp 7312 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-nul 4144 ax-pow 4189 ax-pr 4224 ax-un 4448 ax-setind 4551 ax-iinf 4602 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-ral 2473 df-rex 2474 df-reu 2475 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-tr 4117 df-eprel 4304 df-id 4308 df-iord 4381 df-on 4383 df-suc 4386 df-iom 4605 df-xp 4647 df-rel 4648 df-cnv 4649 df-co 4650 df-dm 4651 df-rn 4652 df-res 4653 df-ima 4654 df-iota 5193 df-fun 5234 df-fn 5235 df-f 5236 df-f1 5237 df-fo 5238 df-f1o 5239 df-fv 5240 df-ov 5895 df-oprab 5896 df-mpo 5897 df-1st 6160 df-2nd 6161 df-recs 6325 df-irdg 6390 df-1o 6436 df-oadd 6440 df-omul 6441 df-er 6554 df-ec 6556 df-qs 6560 df-ni 7323 df-pli 7324 df-mi 7325 df-lti 7326 df-plpq 7363 df-mpq 7364 df-enq 7366 df-nqqs 7367 df-plqqs 7368 df-mqqs 7369 df-1nqqs 7370 df-rq 7371 df-ltnqqs 7372 df-inp 7485 df-iplp 7487 |
This theorem is referenced by: addlocprlem 7554 |
Copyright terms: Public domain | W3C validator |