ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addlocprlemlt GIF version

Theorem addlocprlemlt 7472
Description: Lemma for addlocpr 7477. The 𝑄 <Q (𝐷 +Q 𝐸) case. (Contributed by Jim Kingdon, 6-Dec-2019.)
Hypotheses
Ref Expression
addlocprlem.a (𝜑𝐴P)
addlocprlem.b (𝜑𝐵P)
addlocprlem.qr (𝜑𝑄 <Q 𝑅)
addlocprlem.p (𝜑𝑃Q)
addlocprlem.qppr (𝜑 → (𝑄 +Q (𝑃 +Q 𝑃)) = 𝑅)
addlocprlem.dlo (𝜑𝐷 ∈ (1st𝐴))
addlocprlem.uup (𝜑𝑈 ∈ (2nd𝐴))
addlocprlem.du (𝜑𝑈 <Q (𝐷 +Q 𝑃))
addlocprlem.elo (𝜑𝐸 ∈ (1st𝐵))
addlocprlem.tup (𝜑𝑇 ∈ (2nd𝐵))
addlocprlem.et (𝜑𝑇 <Q (𝐸 +Q 𝑃))
Assertion
Ref Expression
addlocprlemlt (𝜑 → (𝑄 <Q (𝐷 +Q 𝐸) → 𝑄 ∈ (1st ‘(𝐴 +P 𝐵))))

Proof of Theorem addlocprlemlt
StepHypRef Expression
1 addlocprlem.a . . 3 (𝜑𝐴P)
2 addlocprlem.dlo . . 3 (𝜑𝐷 ∈ (1st𝐴))
31, 2jca 304 . 2 (𝜑 → (𝐴P𝐷 ∈ (1st𝐴)))
4 addlocprlem.b . . 3 (𝜑𝐵P)
5 addlocprlem.elo . . 3 (𝜑𝐸 ∈ (1st𝐵))
64, 5jca 304 . 2 (𝜑 → (𝐵P𝐸 ∈ (1st𝐵)))
7 addlocprlem.qr . . 3 (𝜑𝑄 <Q 𝑅)
8 ltrelnq 7306 . . . . 5 <Q ⊆ (Q × Q)
98brel 4656 . . . 4 (𝑄 <Q 𝑅 → (𝑄Q𝑅Q))
109simpld 111 . . 3 (𝑄 <Q 𝑅𝑄Q)
117, 10syl 14 . 2 (𝜑𝑄Q)
12 addnqprl 7470 . 2 ((((𝐴P𝐷 ∈ (1st𝐴)) ∧ (𝐵P𝐸 ∈ (1st𝐵))) ∧ 𝑄Q) → (𝑄 <Q (𝐷 +Q 𝐸) → 𝑄 ∈ (1st ‘(𝐴 +P 𝐵))))
133, 6, 11, 12syl21anc 1227 1 (𝜑 → (𝑄 <Q (𝐷 +Q 𝐸) → 𝑄 ∈ (1st ‘(𝐴 +P 𝐵))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wcel 2136   class class class wbr 3982  cfv 5188  (class class class)co 5842  1st c1st 6106  2nd c2nd 6107  Qcnq 7221   +Q cplq 7223   <Q cltq 7226  Pcnp 7232   +P cpp 7234
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-eprel 4267  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-1o 6384  df-oadd 6388  df-omul 6389  df-er 6501  df-ec 6503  df-qs 6507  df-ni 7245  df-pli 7246  df-mi 7247  df-lti 7248  df-plpq 7285  df-mpq 7286  df-enq 7288  df-nqqs 7289  df-plqqs 7290  df-mqqs 7291  df-1nqqs 7292  df-rq 7293  df-ltnqqs 7294  df-inp 7407  df-iplp 7409
This theorem is referenced by:  addlocprlem  7476
  Copyright terms: Public domain W3C validator