| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addlocprlemlt | GIF version | ||
| Description: Lemma for addlocpr 7679. The 𝑄 <Q (𝐷 +Q 𝐸) case. (Contributed by Jim Kingdon, 6-Dec-2019.) |
| Ref | Expression |
|---|---|
| addlocprlem.a | ⊢ (𝜑 → 𝐴 ∈ P) |
| addlocprlem.b | ⊢ (𝜑 → 𝐵 ∈ P) |
| addlocprlem.qr | ⊢ (𝜑 → 𝑄 <Q 𝑅) |
| addlocprlem.p | ⊢ (𝜑 → 𝑃 ∈ Q) |
| addlocprlem.qppr | ⊢ (𝜑 → (𝑄 +Q (𝑃 +Q 𝑃)) = 𝑅) |
| addlocprlem.dlo | ⊢ (𝜑 → 𝐷 ∈ (1st ‘𝐴)) |
| addlocprlem.uup | ⊢ (𝜑 → 𝑈 ∈ (2nd ‘𝐴)) |
| addlocprlem.du | ⊢ (𝜑 → 𝑈 <Q (𝐷 +Q 𝑃)) |
| addlocprlem.elo | ⊢ (𝜑 → 𝐸 ∈ (1st ‘𝐵)) |
| addlocprlem.tup | ⊢ (𝜑 → 𝑇 ∈ (2nd ‘𝐵)) |
| addlocprlem.et | ⊢ (𝜑 → 𝑇 <Q (𝐸 +Q 𝑃)) |
| Ref | Expression |
|---|---|
| addlocprlemlt | ⊢ (𝜑 → (𝑄 <Q (𝐷 +Q 𝐸) → 𝑄 ∈ (1st ‘(𝐴 +P 𝐵)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addlocprlem.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ P) | |
| 2 | addlocprlem.dlo | . . 3 ⊢ (𝜑 → 𝐷 ∈ (1st ‘𝐴)) | |
| 3 | 1, 2 | jca 306 | . 2 ⊢ (𝜑 → (𝐴 ∈ P ∧ 𝐷 ∈ (1st ‘𝐴))) |
| 4 | addlocprlem.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ P) | |
| 5 | addlocprlem.elo | . . 3 ⊢ (𝜑 → 𝐸 ∈ (1st ‘𝐵)) | |
| 6 | 4, 5 | jca 306 | . 2 ⊢ (𝜑 → (𝐵 ∈ P ∧ 𝐸 ∈ (1st ‘𝐵))) |
| 7 | addlocprlem.qr | . . 3 ⊢ (𝜑 → 𝑄 <Q 𝑅) | |
| 8 | ltrelnq 7508 | . . . . 5 ⊢ <Q ⊆ (Q × Q) | |
| 9 | 8 | brel 4740 | . . . 4 ⊢ (𝑄 <Q 𝑅 → (𝑄 ∈ Q ∧ 𝑅 ∈ Q)) |
| 10 | 9 | simpld 112 | . . 3 ⊢ (𝑄 <Q 𝑅 → 𝑄 ∈ Q) |
| 11 | 7, 10 | syl 14 | . 2 ⊢ (𝜑 → 𝑄 ∈ Q) |
| 12 | addnqprl 7672 | . 2 ⊢ ((((𝐴 ∈ P ∧ 𝐷 ∈ (1st ‘𝐴)) ∧ (𝐵 ∈ P ∧ 𝐸 ∈ (1st ‘𝐵))) ∧ 𝑄 ∈ Q) → (𝑄 <Q (𝐷 +Q 𝐸) → 𝑄 ∈ (1st ‘(𝐴 +P 𝐵)))) | |
| 13 | 3, 6, 11, 12 | syl21anc 1249 | 1 ⊢ (𝜑 → (𝑄 <Q (𝐷 +Q 𝐸) → 𝑄 ∈ (1st ‘(𝐴 +P 𝐵)))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 class class class wbr 4054 ‘cfv 5285 (class class class)co 5962 1st c1st 6242 2nd c2nd 6243 Qcnq 7423 +Q cplq 7425 <Q cltq 7428 Pcnp 7434 +P cpp 7436 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4170 ax-sep 4173 ax-nul 4181 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 ax-iinf 4649 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-int 3895 df-iun 3938 df-br 4055 df-opab 4117 df-mpt 4118 df-tr 4154 df-eprel 4349 df-id 4353 df-iord 4426 df-on 4428 df-suc 4431 df-iom 4652 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-f1 5290 df-fo 5291 df-f1o 5292 df-fv 5293 df-ov 5965 df-oprab 5966 df-mpo 5967 df-1st 6244 df-2nd 6245 df-recs 6409 df-irdg 6474 df-1o 6520 df-oadd 6524 df-omul 6525 df-er 6638 df-ec 6640 df-qs 6644 df-ni 7447 df-pli 7448 df-mi 7449 df-lti 7450 df-plpq 7487 df-mpq 7488 df-enq 7490 df-nqqs 7491 df-plqqs 7492 df-mqqs 7493 df-1nqqs 7494 df-rq 7495 df-ltnqqs 7496 df-inp 7609 df-iplp 7611 |
| This theorem is referenced by: addlocprlem 7678 |
| Copyright terms: Public domain | W3C validator |