ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  usgrun GIF version

Theorem usgrun 15948
Description: The union 𝑈 of two simple graphs 𝐺 and 𝐻 with the same vertex set 𝑉 is a multigraph (not necessarily a simple graph!) with the vertex 𝑉 and the union (𝐸𝐹) of the (indexed) edges. (Contributed by AV, 29-Nov-2020.)
Hypotheses
Ref Expression
usgrun.g (𝜑𝐺 ∈ USGraph)
usgrun.h (𝜑𝐻 ∈ USGraph)
usgrun.e 𝐸 = (iEdg‘𝐺)
usgrun.f 𝐹 = (iEdg‘𝐻)
usgrun.vg 𝑉 = (Vtx‘𝐺)
usgrun.vh (𝜑 → (Vtx‘𝐻) = 𝑉)
usgrun.i (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅)
usgrun.u (𝜑𝑈𝑊)
usgrun.v (𝜑 → (Vtx‘𝑈) = 𝑉)
usgrun.un (𝜑 → (iEdg‘𝑈) = (𝐸𝐹))
Assertion
Ref Expression
usgrun (𝜑𝑈 ∈ UMGraph)

Proof of Theorem usgrun
StepHypRef Expression
1 usgrun.g . . 3 (𝜑𝐺 ∈ USGraph)
2 usgrumgr 15939 . . 3 (𝐺 ∈ USGraph → 𝐺 ∈ UMGraph)
31, 2syl 14 . 2 (𝜑𝐺 ∈ UMGraph)
4 usgrun.h . . 3 (𝜑𝐻 ∈ USGraph)
5 usgrumgr 15939 . . 3 (𝐻 ∈ USGraph → 𝐻 ∈ UMGraph)
64, 5syl 14 . 2 (𝜑𝐻 ∈ UMGraph)
7 usgrun.e . 2 𝐸 = (iEdg‘𝐺)
8 usgrun.f . 2 𝐹 = (iEdg‘𝐻)
9 usgrun.vg . 2 𝑉 = (Vtx‘𝐺)
10 usgrun.vh . 2 (𝜑 → (Vtx‘𝐻) = 𝑉)
11 usgrun.i . 2 (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅)
12 usgrun.u . 2 (𝜑𝑈𝑊)
13 usgrun.v . 2 (𝜑 → (Vtx‘𝑈) = 𝑉)
14 usgrun.un . 2 (𝜑 → (iEdg‘𝑈) = (𝐸𝐹))
153, 6, 7, 8, 9, 10, 11, 12, 13, 14umgrun 15883 1 (𝜑𝑈 ∈ UMGraph)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wcel 2178  cun 3173  cin 3174  c0 3469  dom cdm 4694  cfv 5291  Vtxcvtx 15772  iEdgciedg 15773  UMGraphcumgr 15849  USGraphcusgr 15909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4179  ax-pow 4235  ax-pr 4270  ax-un 4499  ax-setind 4604  ax-cnex 8053  ax-resscn 8054  ax-1cn 8055  ax-1re 8056  ax-icn 8057  ax-addcl 8058  ax-addrcl 8059  ax-mulcl 8060  ax-addcom 8062  ax-mulcom 8063  ax-addass 8064  ax-mulass 8065  ax-distr 8066  ax-i2m1 8067  ax-1rid 8069  ax-0id 8070  ax-rnegex 8071  ax-cnre 8073
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2779  df-sbc 3007  df-csb 3103  df-dif 3177  df-un 3179  df-in 3181  df-ss 3188  df-nul 3470  df-if 3581  df-pw 3629  df-sn 3650  df-pr 3651  df-op 3653  df-uni 3866  df-int 3901  df-br 4061  df-opab 4123  df-mpt 4124  df-id 4359  df-xp 4700  df-rel 4701  df-cnv 4702  df-co 4703  df-dm 4704  df-rn 4705  df-res 4706  df-iota 5252  df-fun 5293  df-fn 5294  df-f 5295  df-f1 5296  df-fo 5297  df-fv 5299  df-riota 5924  df-ov 5972  df-oprab 5973  df-mpo 5974  df-1st 6251  df-2nd 6252  df-sub 8282  df-inn 9074  df-2 9132  df-3 9133  df-4 9134  df-5 9135  df-6 9136  df-7 9137  df-8 9138  df-9 9139  df-n0 9333  df-dec 9542  df-ndx 12996  df-slot 12997  df-base 12999  df-edgf 15765  df-vtx 15774  df-iedg 15775  df-umgren 15851  df-usgren 15911
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator