ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  usgrunop GIF version

Theorem usgrunop 15992
Description: The union of two simple graphs (with the same vertex set): If 𝑉, 𝐸 and 𝑉, 𝐹 are simple graphs, then 𝑉, 𝐸𝐹 is a multigraph (not necessarily a simple graph!) - the vertex set stays the same, but the edges from both graphs are kept, possibly resulting in two edges between two vertices. (Contributed by AV, 29-Nov-2020.)
Hypotheses
Ref Expression
usgrun.g (𝜑𝐺 ∈ USGraph)
usgrun.h (𝜑𝐻 ∈ USGraph)
usgrun.e 𝐸 = (iEdg‘𝐺)
usgrun.f 𝐹 = (iEdg‘𝐻)
usgrun.vg 𝑉 = (Vtx‘𝐺)
usgrun.vh (𝜑 → (Vtx‘𝐻) = 𝑉)
usgrun.i (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅)
Assertion
Ref Expression
usgrunop (𝜑 → ⟨𝑉, (𝐸𝐹)⟩ ∈ UMGraph)

Proof of Theorem usgrunop
StepHypRef Expression
1 usgrun.g . . 3 (𝜑𝐺 ∈ USGraph)
2 usgrumgr 15982 . . 3 (𝐺 ∈ USGraph → 𝐺 ∈ UMGraph)
31, 2syl 14 . 2 (𝜑𝐺 ∈ UMGraph)
4 usgrun.h . . 3 (𝜑𝐻 ∈ USGraph)
5 usgrumgr 15982 . . 3 (𝐻 ∈ USGraph → 𝐻 ∈ UMGraph)
64, 5syl 14 . 2 (𝜑𝐻 ∈ UMGraph)
7 usgrun.e . 2 𝐸 = (iEdg‘𝐺)
8 usgrun.f . 2 𝐹 = (iEdg‘𝐻)
9 usgrun.vg . 2 𝑉 = (Vtx‘𝐺)
10 usgrun.vh . 2 (𝜑 → (Vtx‘𝐻) = 𝑉)
11 usgrun.i . 2 (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅)
123, 6, 7, 8, 9, 10, 11umgrunop 15927 1 (𝜑 → ⟨𝑉, (𝐸𝐹)⟩ ∈ UMGraph)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wcel 2200  cun 3195  cin 3196  c0 3491  cop 3669  dom cdm 4719  cfv 5318  Vtxcvtx 15813  iEdgciedg 15814  UMGraphcumgr 15892  USGraphcusgr 15952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-sub 8319  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-5 9172  df-6 9173  df-7 9174  df-8 9175  df-9 9176  df-n0 9370  df-dec 9579  df-ndx 13035  df-slot 13036  df-base 13038  df-edgf 15806  df-vtx 15815  df-iedg 15816  df-umgren 15894  df-usgren 15954
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator