MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgitg1 Structured version   Visualization version   GIF version

Theorem itgitg1 25307
Description: Transfer an integral using 1 to an equivalent integral using . (Contributed by Mario Carneiro, 6-Aug-2014.)
Assertion
Ref Expression
itgitg1 (𝐹 ∈ dom ∫1 → ∫ℝ(𝐹𝑥) d𝑥 = (∫1𝐹))
Distinct variable group:   𝑥,𝐹

Proof of Theorem itgitg1
StepHypRef Expression
1 i1ff 25174 . . . 4 (𝐹 ∈ dom ∫1𝐹:ℝ⟶ℝ)
21ffvelcdmda 7081 . . 3 ((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ)
31feqmptd 6955 . . . 4 (𝐹 ∈ dom ∫1𝐹 = (𝑥 ∈ ℝ ↦ (𝐹𝑥)))
4 i1fibl 25306 . . . 4 (𝐹 ∈ dom ∫1𝐹 ∈ 𝐿1)
53, 4eqeltrrd 2835 . . 3 (𝐹 ∈ dom ∫1 → (𝑥 ∈ ℝ ↦ (𝐹𝑥)) ∈ 𝐿1)
62, 5itgreval 25295 . 2 (𝐹 ∈ dom ∫1 → ∫ℝ(𝐹𝑥) d𝑥 = (∫ℝif(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) d𝑥 − ∫ℝif(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0) d𝑥))
7 0re 11211 . . . . . . 7 0 ∈ ℝ
8 ifcl 4571 . . . . . . 7 (((𝐹𝑥) ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) ∈ ℝ)
92, 7, 8sylancl 587 . . . . . 6 ((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) → if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) ∈ ℝ)
10 max1 13159 . . . . . . 7 ((0 ∈ ℝ ∧ (𝐹𝑥) ∈ ℝ) → 0 ≤ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0))
117, 2, 10sylancr 588 . . . . . 6 ((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) → 0 ≤ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0))
12 id 22 . . . . . . . . 9 (𝐹 ∈ dom ∫1𝐹 ∈ dom ∫1)
133, 12eqeltrrd 2835 . . . . . . . 8 (𝐹 ∈ dom ∫1 → (𝑥 ∈ ℝ ↦ (𝐹𝑥)) ∈ dom ∫1)
1413i1fposd 25206 . . . . . . 7 (𝐹 ∈ dom ∫1 → (𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0)) ∈ dom ∫1)
15 i1fibl 25306 . . . . . . 7 ((𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0)) ∈ dom ∫1 → (𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0)) ∈ 𝐿1)
1614, 15syl 17 . . . . . 6 (𝐹 ∈ dom ∫1 → (𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0)) ∈ 𝐿1)
179, 11, 16itgitg2 25305 . . . . 5 (𝐹 ∈ dom ∫1 → ∫ℝif(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) d𝑥 = (∫2‘(𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0))))
1811ralrimiva 3147 . . . . . . . 8 (𝐹 ∈ dom ∫1 → ∀𝑥 ∈ ℝ 0 ≤ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0))
19 reex 11196 . . . . . . . . . 10 ℝ ∈ V
2019a1i 11 . . . . . . . . 9 (𝐹 ∈ dom ∫1 → ℝ ∈ V)
217a1i 11 . . . . . . . . 9 ((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) → 0 ∈ ℝ)
22 fconstmpt 5735 . . . . . . . . . 10 (ℝ × {0}) = (𝑥 ∈ ℝ ↦ 0)
2322a1i 11 . . . . . . . . 9 (𝐹 ∈ dom ∫1 → (ℝ × {0}) = (𝑥 ∈ ℝ ↦ 0))
24 eqidd 2734 . . . . . . . . 9 (𝐹 ∈ dom ∫1 → (𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0)) = (𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0)))
2520, 21, 9, 23, 24ofrfval2 7685 . . . . . . . 8 (𝐹 ∈ dom ∫1 → ((ℝ × {0}) ∘r ≤ (𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0)) ↔ ∀𝑥 ∈ ℝ 0 ≤ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0)))
2618, 25mpbird 257 . . . . . . 7 (𝐹 ∈ dom ∫1 → (ℝ × {0}) ∘r ≤ (𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0)))
27 ax-resscn 11162 . . . . . . . . 9 ℝ ⊆ ℂ
2827a1i 11 . . . . . . . 8 (𝐹 ∈ dom ∫1 → ℝ ⊆ ℂ)
299fmpttd 7109 . . . . . . . . 9 (𝐹 ∈ dom ∫1 → (𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0)):ℝ⟶ℝ)
3029ffnd 6714 . . . . . . . 8 (𝐹 ∈ dom ∫1 → (𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0)) Fn ℝ)
3128, 300pledm 25171 . . . . . . 7 (𝐹 ∈ dom ∫1 → (0𝑝r ≤ (𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0)) ↔ (ℝ × {0}) ∘r ≤ (𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0))))
3226, 31mpbird 257 . . . . . 6 (𝐹 ∈ dom ∫1 → 0𝑝r ≤ (𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0)))
33 itg2itg1 25235 . . . . . 6 (((𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0)) ∈ dom ∫1 ∧ 0𝑝r ≤ (𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0))) → (∫2‘(𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0))) = (∫1‘(𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0))))
3414, 32, 33syl2anc 585 . . . . 5 (𝐹 ∈ dom ∫1 → (∫2‘(𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0))) = (∫1‘(𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0))))
3517, 34eqtrd 2773 . . . 4 (𝐹 ∈ dom ∫1 → ∫ℝif(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) d𝑥 = (∫1‘(𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0))))
362renegcld 11636 . . . . . . 7 ((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) → -(𝐹𝑥) ∈ ℝ)
37 ifcl 4571 . . . . . . 7 ((-(𝐹𝑥) ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0) ∈ ℝ)
3836, 7, 37sylancl 587 . . . . . 6 ((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) → if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0) ∈ ℝ)
39 max1 13159 . . . . . . 7 ((0 ∈ ℝ ∧ -(𝐹𝑥) ∈ ℝ) → 0 ≤ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))
407, 36, 39sylancr 588 . . . . . 6 ((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) → 0 ≤ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))
41 neg1rr 12322 . . . . . . . . . . . 12 -1 ∈ ℝ
4241a1i 11 . . . . . . . . . . 11 ((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) → -1 ∈ ℝ)
43 fconstmpt 5735 . . . . . . . . . . . 12 (ℝ × {-1}) = (𝑥 ∈ ℝ ↦ -1)
4443a1i 11 . . . . . . . . . . 11 (𝐹 ∈ dom ∫1 → (ℝ × {-1}) = (𝑥 ∈ ℝ ↦ -1))
4520, 42, 2, 44, 3offval2 7684 . . . . . . . . . 10 (𝐹 ∈ dom ∫1 → ((ℝ × {-1}) ∘f · 𝐹) = (𝑥 ∈ ℝ ↦ (-1 · (𝐹𝑥))))
462recnd 11237 . . . . . . . . . . . 12 ((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℂ)
4746mulm1d 11661 . . . . . . . . . . 11 ((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) → (-1 · (𝐹𝑥)) = -(𝐹𝑥))
4847mpteq2dva 5246 . . . . . . . . . 10 (𝐹 ∈ dom ∫1 → (𝑥 ∈ ℝ ↦ (-1 · (𝐹𝑥))) = (𝑥 ∈ ℝ ↦ -(𝐹𝑥)))
4945, 48eqtrd 2773 . . . . . . . . 9 (𝐹 ∈ dom ∫1 → ((ℝ × {-1}) ∘f · 𝐹) = (𝑥 ∈ ℝ ↦ -(𝐹𝑥)))
5041a1i 11 . . . . . . . . . 10 (𝐹 ∈ dom ∫1 → -1 ∈ ℝ)
5112, 50i1fmulc 25202 . . . . . . . . 9 (𝐹 ∈ dom ∫1 → ((ℝ × {-1}) ∘f · 𝐹) ∈ dom ∫1)
5249, 51eqeltrrd 2835 . . . . . . . 8 (𝐹 ∈ dom ∫1 → (𝑥 ∈ ℝ ↦ -(𝐹𝑥)) ∈ dom ∫1)
5352i1fposd 25206 . . . . . . 7 (𝐹 ∈ dom ∫1 → (𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)) ∈ dom ∫1)
54 i1fibl 25306 . . . . . . 7 ((𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)) ∈ dom ∫1 → (𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)) ∈ 𝐿1)
5553, 54syl 17 . . . . . 6 (𝐹 ∈ dom ∫1 → (𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)) ∈ 𝐿1)
5638, 40, 55itgitg2 25305 . . . . 5 (𝐹 ∈ dom ∫1 → ∫ℝif(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0) d𝑥 = (∫2‘(𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))))
5740ralrimiva 3147 . . . . . . . 8 (𝐹 ∈ dom ∫1 → ∀𝑥 ∈ ℝ 0 ≤ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))
58 eqidd 2734 . . . . . . . . 9 (𝐹 ∈ dom ∫1 → (𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)) = (𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)))
5920, 21, 38, 23, 58ofrfval2 7685 . . . . . . . 8 (𝐹 ∈ dom ∫1 → ((ℝ × {0}) ∘r ≤ (𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)) ↔ ∀𝑥 ∈ ℝ 0 ≤ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)))
6057, 59mpbird 257 . . . . . . 7 (𝐹 ∈ dom ∫1 → (ℝ × {0}) ∘r ≤ (𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)))
6138fmpttd 7109 . . . . . . . . 9 (𝐹 ∈ dom ∫1 → (𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)):ℝ⟶ℝ)
6261ffnd 6714 . . . . . . . 8 (𝐹 ∈ dom ∫1 → (𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)) Fn ℝ)
6328, 620pledm 25171 . . . . . . 7 (𝐹 ∈ dom ∫1 → (0𝑝r ≤ (𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)) ↔ (ℝ × {0}) ∘r ≤ (𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))))
6460, 63mpbird 257 . . . . . 6 (𝐹 ∈ dom ∫1 → 0𝑝r ≤ (𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)))
65 itg2itg1 25235 . . . . . 6 (((𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)) ∈ dom ∫1 ∧ 0𝑝r ≤ (𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))) → (∫2‘(𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))) = (∫1‘(𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))))
6653, 64, 65syl2anc 585 . . . . 5 (𝐹 ∈ dom ∫1 → (∫2‘(𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))) = (∫1‘(𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))))
6756, 66eqtrd 2773 . . . 4 (𝐹 ∈ dom ∫1 → ∫ℝif(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0) d𝑥 = (∫1‘(𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))))
6835, 67oveq12d 7421 . . 3 (𝐹 ∈ dom ∫1 → (∫ℝif(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) d𝑥 − ∫ℝif(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0) d𝑥) = ((∫1‘(𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0))) − (∫1‘(𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)))))
69 itg1sub 25208 . . . 4 (((𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0)) ∈ dom ∫1 ∧ (𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)) ∈ dom ∫1) → (∫1‘((𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0)) ∘f − (𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)))) = ((∫1‘(𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0))) − (∫1‘(𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)))))
7014, 53, 69syl2anc 585 . . 3 (𝐹 ∈ dom ∫1 → (∫1‘((𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0)) ∘f − (𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)))) = ((∫1‘(𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0))) − (∫1‘(𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)))))
7168, 70eqtr4d 2776 . 2 (𝐹 ∈ dom ∫1 → (∫ℝif(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) d𝑥 − ∫ℝif(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0) d𝑥) = (∫1‘((𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0)) ∘f − (𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)))))
72 max0sub 13170 . . . . . 6 ((𝐹𝑥) ∈ ℝ → (if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) − if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)) = (𝐹𝑥))
732, 72syl 17 . . . . 5 ((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) → (if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) − if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)) = (𝐹𝑥))
7473mpteq2dva 5246 . . . 4 (𝐹 ∈ dom ∫1 → (𝑥 ∈ ℝ ↦ (if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) − if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))) = (𝑥 ∈ ℝ ↦ (𝐹𝑥)))
7520, 9, 38, 24, 58offval2 7684 . . . 4 (𝐹 ∈ dom ∫1 → ((𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0)) ∘f − (𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))) = (𝑥 ∈ ℝ ↦ (if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) − if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))))
7674, 75, 33eqtr4d 2783 . . 3 (𝐹 ∈ dom ∫1 → ((𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0)) ∘f − (𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))) = 𝐹)
7776fveq2d 6891 . 2 (𝐹 ∈ dom ∫1 → (∫1‘((𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0)) ∘f − (𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)))) = (∫1𝐹))
786, 71, 773eqtrd 2777 1 (𝐹 ∈ dom ∫1 → ∫ℝ(𝐹𝑥) d𝑥 = (∫1𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  wral 3062  Vcvv 3475  wss 3946  ifcif 4526  {csn 4626   class class class wbr 5146  cmpt 5229   × cxp 5672  dom cdm 5674  cfv 6539  (class class class)co 7403  f cof 7662  r cofr 7663  cc 11103  cr 11104  0cc0 11105  1c1 11106   · cmul 11110  cle 11244  cmin 11439  -cneg 11440  1citg1 25113  2citg2 25114  𝐿1cibl 25115  citg 25116  0𝑝c0p 25167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5283  ax-sep 5297  ax-nul 5304  ax-pow 5361  ax-pr 5425  ax-un 7719  ax-inf2 9631  ax-cnex 11161  ax-resscn 11162  ax-1cn 11163  ax-icn 11164  ax-addcl 11165  ax-addrcl 11166  ax-mulcl 11167  ax-mulrcl 11168  ax-mulcom 11169  ax-addass 11170  ax-mulass 11171  ax-distr 11172  ax-i2m1 11173  ax-1ne0 11174  ax-1rid 11175  ax-rnegex 11176  ax-rrecex 11177  ax-cnre 11178  ax-pre-lttri 11179  ax-pre-lttrn 11180  ax-pre-ltadd 11181  ax-pre-mulgt0 11182  ax-pre-sup 11183  ax-addf 11184
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3965  df-nul 4321  df-if 4527  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4907  df-int 4949  df-iun 4997  df-disj 5112  df-br 5147  df-opab 5209  df-mpt 5230  df-tr 5264  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-se 5630  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6296  df-ord 6363  df-on 6364  df-lim 6365  df-suc 6366  df-iota 6491  df-fun 6541  df-fn 6542  df-f 6543  df-f1 6544  df-fo 6545  df-f1o 6546  df-fv 6547  df-isom 6548  df-riota 7359  df-ov 7406  df-oprab 7407  df-mpo 7408  df-of 7664  df-ofr 7665  df-om 7850  df-1st 7969  df-2nd 7970  df-frecs 8260  df-wrecs 8291  df-recs 8365  df-rdg 8404  df-1o 8460  df-2o 8461  df-er 8698  df-map 8817  df-pm 8818  df-en 8935  df-dom 8936  df-sdom 8937  df-fin 8938  df-fi 9401  df-sup 9432  df-inf 9433  df-oi 9500  df-dju 9891  df-card 9929  df-pnf 11245  df-mnf 11246  df-xr 11247  df-ltxr 11248  df-le 11249  df-sub 11441  df-neg 11442  df-div 11867  df-nn 12208  df-2 12270  df-3 12271  df-4 12272  df-n0 12468  df-z 12554  df-uz 12818  df-q 12928  df-rp 12970  df-xneg 13087  df-xadd 13088  df-xmul 13089  df-ioo 13323  df-ico 13325  df-icc 13326  df-fz 13480  df-fzo 13623  df-fl 13752  df-mod 13830  df-seq 13962  df-exp 14023  df-hash 14286  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15427  df-sum 15628  df-rest 17363  df-topgen 17384  df-psmet 20920  df-xmet 20921  df-met 20922  df-bl 20923  df-mopn 20924  df-top 22377  df-topon 22394  df-bases 22430  df-cmp 22872  df-ovol 24962  df-vol 24963  df-mbf 25117  df-itg1 25118  df-itg2 25119  df-ibl 25120  df-itg 25121  df-0p 25168
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator