MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgitg1 Structured version   Visualization version   GIF version

Theorem itgitg1 25845
Description: Transfer an integral using 1 to an equivalent integral using . (Contributed by Mario Carneiro, 6-Aug-2014.)
Assertion
Ref Expression
itgitg1 (𝐹 ∈ dom ∫1 → ∫ℝ(𝐹𝑥) d𝑥 = (∫1𝐹))
Distinct variable group:   𝑥,𝐹

Proof of Theorem itgitg1
StepHypRef Expression
1 i1ff 25712 . . . 4 (𝐹 ∈ dom ∫1𝐹:ℝ⟶ℝ)
21ffvelcdmda 7103 . . 3 ((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ)
31feqmptd 6976 . . . 4 (𝐹 ∈ dom ∫1𝐹 = (𝑥 ∈ ℝ ↦ (𝐹𝑥)))
4 i1fibl 25844 . . . 4 (𝐹 ∈ dom ∫1𝐹 ∈ 𝐿1)
53, 4eqeltrrd 2841 . . 3 (𝐹 ∈ dom ∫1 → (𝑥 ∈ ℝ ↦ (𝐹𝑥)) ∈ 𝐿1)
62, 5itgreval 25833 . 2 (𝐹 ∈ dom ∫1 → ∫ℝ(𝐹𝑥) d𝑥 = (∫ℝif(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) d𝑥 − ∫ℝif(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0) d𝑥))
7 0re 11264 . . . . . . 7 0 ∈ ℝ
8 ifcl 4570 . . . . . . 7 (((𝐹𝑥) ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) ∈ ℝ)
92, 7, 8sylancl 586 . . . . . 6 ((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) → if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) ∈ ℝ)
10 max1 13228 . . . . . . 7 ((0 ∈ ℝ ∧ (𝐹𝑥) ∈ ℝ) → 0 ≤ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0))
117, 2, 10sylancr 587 . . . . . 6 ((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) → 0 ≤ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0))
12 id 22 . . . . . . . . 9 (𝐹 ∈ dom ∫1𝐹 ∈ dom ∫1)
133, 12eqeltrrd 2841 . . . . . . . 8 (𝐹 ∈ dom ∫1 → (𝑥 ∈ ℝ ↦ (𝐹𝑥)) ∈ dom ∫1)
1413i1fposd 25743 . . . . . . 7 (𝐹 ∈ dom ∫1 → (𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0)) ∈ dom ∫1)
15 i1fibl 25844 . . . . . . 7 ((𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0)) ∈ dom ∫1 → (𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0)) ∈ 𝐿1)
1614, 15syl 17 . . . . . 6 (𝐹 ∈ dom ∫1 → (𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0)) ∈ 𝐿1)
179, 11, 16itgitg2 25843 . . . . 5 (𝐹 ∈ dom ∫1 → ∫ℝif(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) d𝑥 = (∫2‘(𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0))))
1811ralrimiva 3145 . . . . . . . 8 (𝐹 ∈ dom ∫1 → ∀𝑥 ∈ ℝ 0 ≤ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0))
19 reex 11247 . . . . . . . . . 10 ℝ ∈ V
2019a1i 11 . . . . . . . . 9 (𝐹 ∈ dom ∫1 → ℝ ∈ V)
217a1i 11 . . . . . . . . 9 ((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) → 0 ∈ ℝ)
22 fconstmpt 5746 . . . . . . . . . 10 (ℝ × {0}) = (𝑥 ∈ ℝ ↦ 0)
2322a1i 11 . . . . . . . . 9 (𝐹 ∈ dom ∫1 → (ℝ × {0}) = (𝑥 ∈ ℝ ↦ 0))
24 eqidd 2737 . . . . . . . . 9 (𝐹 ∈ dom ∫1 → (𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0)) = (𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0)))
2520, 21, 9, 23, 24ofrfval2 7719 . . . . . . . 8 (𝐹 ∈ dom ∫1 → ((ℝ × {0}) ∘r ≤ (𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0)) ↔ ∀𝑥 ∈ ℝ 0 ≤ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0)))
2618, 25mpbird 257 . . . . . . 7 (𝐹 ∈ dom ∫1 → (ℝ × {0}) ∘r ≤ (𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0)))
27 ax-resscn 11213 . . . . . . . . 9 ℝ ⊆ ℂ
2827a1i 11 . . . . . . . 8 (𝐹 ∈ dom ∫1 → ℝ ⊆ ℂ)
299fmpttd 7134 . . . . . . . . 9 (𝐹 ∈ dom ∫1 → (𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0)):ℝ⟶ℝ)
3029ffnd 6736 . . . . . . . 8 (𝐹 ∈ dom ∫1 → (𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0)) Fn ℝ)
3128, 300pledm 25709 . . . . . . 7 (𝐹 ∈ dom ∫1 → (0𝑝r ≤ (𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0)) ↔ (ℝ × {0}) ∘r ≤ (𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0))))
3226, 31mpbird 257 . . . . . 6 (𝐹 ∈ dom ∫1 → 0𝑝r ≤ (𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0)))
33 itg2itg1 25772 . . . . . 6 (((𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0)) ∈ dom ∫1 ∧ 0𝑝r ≤ (𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0))) → (∫2‘(𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0))) = (∫1‘(𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0))))
3414, 32, 33syl2anc 584 . . . . 5 (𝐹 ∈ dom ∫1 → (∫2‘(𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0))) = (∫1‘(𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0))))
3517, 34eqtrd 2776 . . . 4 (𝐹 ∈ dom ∫1 → ∫ℝif(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) d𝑥 = (∫1‘(𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0))))
362renegcld 11691 . . . . . . 7 ((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) → -(𝐹𝑥) ∈ ℝ)
37 ifcl 4570 . . . . . . 7 ((-(𝐹𝑥) ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0) ∈ ℝ)
3836, 7, 37sylancl 586 . . . . . 6 ((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) → if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0) ∈ ℝ)
39 max1 13228 . . . . . . 7 ((0 ∈ ℝ ∧ -(𝐹𝑥) ∈ ℝ) → 0 ≤ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))
407, 36, 39sylancr 587 . . . . . 6 ((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) → 0 ≤ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))
41 neg1rr 12382 . . . . . . . . . . . 12 -1 ∈ ℝ
4241a1i 11 . . . . . . . . . . 11 ((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) → -1 ∈ ℝ)
43 fconstmpt 5746 . . . . . . . . . . . 12 (ℝ × {-1}) = (𝑥 ∈ ℝ ↦ -1)
4443a1i 11 . . . . . . . . . . 11 (𝐹 ∈ dom ∫1 → (ℝ × {-1}) = (𝑥 ∈ ℝ ↦ -1))
4520, 42, 2, 44, 3offval2 7718 . . . . . . . . . 10 (𝐹 ∈ dom ∫1 → ((ℝ × {-1}) ∘f · 𝐹) = (𝑥 ∈ ℝ ↦ (-1 · (𝐹𝑥))))
462recnd 11290 . . . . . . . . . . . 12 ((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℂ)
4746mulm1d 11716 . . . . . . . . . . 11 ((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) → (-1 · (𝐹𝑥)) = -(𝐹𝑥))
4847mpteq2dva 5241 . . . . . . . . . 10 (𝐹 ∈ dom ∫1 → (𝑥 ∈ ℝ ↦ (-1 · (𝐹𝑥))) = (𝑥 ∈ ℝ ↦ -(𝐹𝑥)))
4945, 48eqtrd 2776 . . . . . . . . 9 (𝐹 ∈ dom ∫1 → ((ℝ × {-1}) ∘f · 𝐹) = (𝑥 ∈ ℝ ↦ -(𝐹𝑥)))
5041a1i 11 . . . . . . . . . 10 (𝐹 ∈ dom ∫1 → -1 ∈ ℝ)
5112, 50i1fmulc 25739 . . . . . . . . 9 (𝐹 ∈ dom ∫1 → ((ℝ × {-1}) ∘f · 𝐹) ∈ dom ∫1)
5249, 51eqeltrrd 2841 . . . . . . . 8 (𝐹 ∈ dom ∫1 → (𝑥 ∈ ℝ ↦ -(𝐹𝑥)) ∈ dom ∫1)
5352i1fposd 25743 . . . . . . 7 (𝐹 ∈ dom ∫1 → (𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)) ∈ dom ∫1)
54 i1fibl 25844 . . . . . . 7 ((𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)) ∈ dom ∫1 → (𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)) ∈ 𝐿1)
5553, 54syl 17 . . . . . 6 (𝐹 ∈ dom ∫1 → (𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)) ∈ 𝐿1)
5638, 40, 55itgitg2 25843 . . . . 5 (𝐹 ∈ dom ∫1 → ∫ℝif(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0) d𝑥 = (∫2‘(𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))))
5740ralrimiva 3145 . . . . . . . 8 (𝐹 ∈ dom ∫1 → ∀𝑥 ∈ ℝ 0 ≤ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))
58 eqidd 2737 . . . . . . . . 9 (𝐹 ∈ dom ∫1 → (𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)) = (𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)))
5920, 21, 38, 23, 58ofrfval2 7719 . . . . . . . 8 (𝐹 ∈ dom ∫1 → ((ℝ × {0}) ∘r ≤ (𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)) ↔ ∀𝑥 ∈ ℝ 0 ≤ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)))
6057, 59mpbird 257 . . . . . . 7 (𝐹 ∈ dom ∫1 → (ℝ × {0}) ∘r ≤ (𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)))
6138fmpttd 7134 . . . . . . . . 9 (𝐹 ∈ dom ∫1 → (𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)):ℝ⟶ℝ)
6261ffnd 6736 . . . . . . . 8 (𝐹 ∈ dom ∫1 → (𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)) Fn ℝ)
6328, 620pledm 25709 . . . . . . 7 (𝐹 ∈ dom ∫1 → (0𝑝r ≤ (𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)) ↔ (ℝ × {0}) ∘r ≤ (𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))))
6460, 63mpbird 257 . . . . . 6 (𝐹 ∈ dom ∫1 → 0𝑝r ≤ (𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)))
65 itg2itg1 25772 . . . . . 6 (((𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)) ∈ dom ∫1 ∧ 0𝑝r ≤ (𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))) → (∫2‘(𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))) = (∫1‘(𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))))
6653, 64, 65syl2anc 584 . . . . 5 (𝐹 ∈ dom ∫1 → (∫2‘(𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))) = (∫1‘(𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))))
6756, 66eqtrd 2776 . . . 4 (𝐹 ∈ dom ∫1 → ∫ℝif(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0) d𝑥 = (∫1‘(𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))))
6835, 67oveq12d 7450 . . 3 (𝐹 ∈ dom ∫1 → (∫ℝif(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) d𝑥 − ∫ℝif(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0) d𝑥) = ((∫1‘(𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0))) − (∫1‘(𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)))))
69 itg1sub 25745 . . . 4 (((𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0)) ∈ dom ∫1 ∧ (𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)) ∈ dom ∫1) → (∫1‘((𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0)) ∘f − (𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)))) = ((∫1‘(𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0))) − (∫1‘(𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)))))
7014, 53, 69syl2anc 584 . . 3 (𝐹 ∈ dom ∫1 → (∫1‘((𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0)) ∘f − (𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)))) = ((∫1‘(𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0))) − (∫1‘(𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)))))
7168, 70eqtr4d 2779 . 2 (𝐹 ∈ dom ∫1 → (∫ℝif(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) d𝑥 − ∫ℝif(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0) d𝑥) = (∫1‘((𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0)) ∘f − (𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)))))
72 max0sub 13239 . . . . . 6 ((𝐹𝑥) ∈ ℝ → (if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) − if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)) = (𝐹𝑥))
732, 72syl 17 . . . . 5 ((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) → (if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) − if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)) = (𝐹𝑥))
7473mpteq2dva 5241 . . . 4 (𝐹 ∈ dom ∫1 → (𝑥 ∈ ℝ ↦ (if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) − if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))) = (𝑥 ∈ ℝ ↦ (𝐹𝑥)))
7520, 9, 38, 24, 58offval2 7718 . . . 4 (𝐹 ∈ dom ∫1 → ((𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0)) ∘f − (𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))) = (𝑥 ∈ ℝ ↦ (if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0) − if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))))
7674, 75, 33eqtr4d 2786 . . 3 (𝐹 ∈ dom ∫1 → ((𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0)) ∘f − (𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0))) = 𝐹)
7776fveq2d 6909 . 2 (𝐹 ∈ dom ∫1 → (∫1‘((𝑥 ∈ ℝ ↦ if(0 ≤ (𝐹𝑥), (𝐹𝑥), 0)) ∘f − (𝑥 ∈ ℝ ↦ if(0 ≤ -(𝐹𝑥), -(𝐹𝑥), 0)))) = (∫1𝐹))
786, 71, 773eqtrd 2780 1 (𝐹 ∈ dom ∫1 → ∫ℝ(𝐹𝑥) d𝑥 = (∫1𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wral 3060  Vcvv 3479  wss 3950  ifcif 4524  {csn 4625   class class class wbr 5142  cmpt 5224   × cxp 5682  dom cdm 5684  cfv 6560  (class class class)co 7432  f cof 7696  r cofr 7697  cc 11154  cr 11155  0cc0 11156  1c1 11157   · cmul 11161  cle 11297  cmin 11493  -cneg 11494  1citg1 25651  2citg2 25652  𝐿1cibl 25653  citg 25654  0𝑝c0p 25705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-inf2 9682  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234  ax-addf 11235
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-disj 5110  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-of 7698  df-ofr 7699  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-2o 8508  df-er 8746  df-map 8869  df-pm 8870  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-fi 9452  df-sup 9483  df-inf 9484  df-oi 9551  df-dju 9942  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-n0 12529  df-z 12616  df-uz 12880  df-q 12992  df-rp 13036  df-xneg 13155  df-xadd 13156  df-xmul 13157  df-ioo 13392  df-ico 13394  df-icc 13395  df-fz 13549  df-fzo 13696  df-fl 13833  df-mod 13911  df-seq 14044  df-exp 14104  df-hash 14371  df-cj 15139  df-re 15140  df-im 15141  df-sqrt 15275  df-abs 15276  df-clim 15525  df-sum 15724  df-rest 17468  df-topgen 17489  df-psmet 21357  df-xmet 21358  df-met 21359  df-bl 21360  df-mopn 21361  df-top 22901  df-topon 22918  df-bases 22954  df-cmp 23396  df-ovol 25500  df-vol 25501  df-mbf 25655  df-itg1 25656  df-itg2 25657  df-ibl 25658  df-itg 25659  df-0p 25706
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator