MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgitg1 Structured version   Visualization version   GIF version

Theorem itgitg1 25196
Description: Transfer an integral using ∫1 to an equivalent integral using ∫. (Contributed by Mario Carneiro, 6-Aug-2014.)
Assertion
Ref Expression
itgitg1 (𝐹 ∈ dom ∫1 β†’ βˆ«β„(πΉβ€˜π‘₯) dπ‘₯ = (∫1β€˜πΉ))
Distinct variable group:   π‘₯,𝐹

Proof of Theorem itgitg1
StepHypRef Expression
1 i1ff 25063 . . . 4 (𝐹 ∈ dom ∫1 β†’ 𝐹:β„βŸΆβ„)
21ffvelcdmda 7039 . . 3 ((𝐹 ∈ dom ∫1 ∧ π‘₯ ∈ ℝ) β†’ (πΉβ€˜π‘₯) ∈ ℝ)
31feqmptd 6914 . . . 4 (𝐹 ∈ dom ∫1 β†’ 𝐹 = (π‘₯ ∈ ℝ ↦ (πΉβ€˜π‘₯)))
4 i1fibl 25195 . . . 4 (𝐹 ∈ dom ∫1 β†’ 𝐹 ∈ 𝐿1)
53, 4eqeltrrd 2835 . . 3 (𝐹 ∈ dom ∫1 β†’ (π‘₯ ∈ ℝ ↦ (πΉβ€˜π‘₯)) ∈ 𝐿1)
62, 5itgreval 25184 . 2 (𝐹 ∈ dom ∫1 β†’ βˆ«β„(πΉβ€˜π‘₯) dπ‘₯ = (βˆ«β„if(0 ≀ (πΉβ€˜π‘₯), (πΉβ€˜π‘₯), 0) dπ‘₯ βˆ’ βˆ«β„if(0 ≀ -(πΉβ€˜π‘₯), -(πΉβ€˜π‘₯), 0) dπ‘₯))
7 0re 11165 . . . . . . 7 0 ∈ ℝ
8 ifcl 4535 . . . . . . 7 (((πΉβ€˜π‘₯) ∈ ℝ ∧ 0 ∈ ℝ) β†’ if(0 ≀ (πΉβ€˜π‘₯), (πΉβ€˜π‘₯), 0) ∈ ℝ)
92, 7, 8sylancl 587 . . . . . 6 ((𝐹 ∈ dom ∫1 ∧ π‘₯ ∈ ℝ) β†’ if(0 ≀ (πΉβ€˜π‘₯), (πΉβ€˜π‘₯), 0) ∈ ℝ)
10 max1 13113 . . . . . . 7 ((0 ∈ ℝ ∧ (πΉβ€˜π‘₯) ∈ ℝ) β†’ 0 ≀ if(0 ≀ (πΉβ€˜π‘₯), (πΉβ€˜π‘₯), 0))
117, 2, 10sylancr 588 . . . . . 6 ((𝐹 ∈ dom ∫1 ∧ π‘₯ ∈ ℝ) β†’ 0 ≀ if(0 ≀ (πΉβ€˜π‘₯), (πΉβ€˜π‘₯), 0))
12 id 22 . . . . . . . . 9 (𝐹 ∈ dom ∫1 β†’ 𝐹 ∈ dom ∫1)
133, 12eqeltrrd 2835 . . . . . . . 8 (𝐹 ∈ dom ∫1 β†’ (π‘₯ ∈ ℝ ↦ (πΉβ€˜π‘₯)) ∈ dom ∫1)
1413i1fposd 25095 . . . . . . 7 (𝐹 ∈ dom ∫1 β†’ (π‘₯ ∈ ℝ ↦ if(0 ≀ (πΉβ€˜π‘₯), (πΉβ€˜π‘₯), 0)) ∈ dom ∫1)
15 i1fibl 25195 . . . . . . 7 ((π‘₯ ∈ ℝ ↦ if(0 ≀ (πΉβ€˜π‘₯), (πΉβ€˜π‘₯), 0)) ∈ dom ∫1 β†’ (π‘₯ ∈ ℝ ↦ if(0 ≀ (πΉβ€˜π‘₯), (πΉβ€˜π‘₯), 0)) ∈ 𝐿1)
1614, 15syl 17 . . . . . 6 (𝐹 ∈ dom ∫1 β†’ (π‘₯ ∈ ℝ ↦ if(0 ≀ (πΉβ€˜π‘₯), (πΉβ€˜π‘₯), 0)) ∈ 𝐿1)
179, 11, 16itgitg2 25194 . . . . 5 (𝐹 ∈ dom ∫1 β†’ βˆ«β„if(0 ≀ (πΉβ€˜π‘₯), (πΉβ€˜π‘₯), 0) dπ‘₯ = (∫2β€˜(π‘₯ ∈ ℝ ↦ if(0 ≀ (πΉβ€˜π‘₯), (πΉβ€˜π‘₯), 0))))
1811ralrimiva 3140 . . . . . . . 8 (𝐹 ∈ dom ∫1 β†’ βˆ€π‘₯ ∈ ℝ 0 ≀ if(0 ≀ (πΉβ€˜π‘₯), (πΉβ€˜π‘₯), 0))
19 reex 11150 . . . . . . . . . 10 ℝ ∈ V
2019a1i 11 . . . . . . . . 9 (𝐹 ∈ dom ∫1 β†’ ℝ ∈ V)
217a1i 11 . . . . . . . . 9 ((𝐹 ∈ dom ∫1 ∧ π‘₯ ∈ ℝ) β†’ 0 ∈ ℝ)
22 fconstmpt 5698 . . . . . . . . . 10 (ℝ Γ— {0}) = (π‘₯ ∈ ℝ ↦ 0)
2322a1i 11 . . . . . . . . 9 (𝐹 ∈ dom ∫1 β†’ (ℝ Γ— {0}) = (π‘₯ ∈ ℝ ↦ 0))
24 eqidd 2734 . . . . . . . . 9 (𝐹 ∈ dom ∫1 β†’ (π‘₯ ∈ ℝ ↦ if(0 ≀ (πΉβ€˜π‘₯), (πΉβ€˜π‘₯), 0)) = (π‘₯ ∈ ℝ ↦ if(0 ≀ (πΉβ€˜π‘₯), (πΉβ€˜π‘₯), 0)))
2520, 21, 9, 23, 24ofrfval2 7642 . . . . . . . 8 (𝐹 ∈ dom ∫1 β†’ ((ℝ Γ— {0}) ∘r ≀ (π‘₯ ∈ ℝ ↦ if(0 ≀ (πΉβ€˜π‘₯), (πΉβ€˜π‘₯), 0)) ↔ βˆ€π‘₯ ∈ ℝ 0 ≀ if(0 ≀ (πΉβ€˜π‘₯), (πΉβ€˜π‘₯), 0)))
2618, 25mpbird 257 . . . . . . 7 (𝐹 ∈ dom ∫1 β†’ (ℝ Γ— {0}) ∘r ≀ (π‘₯ ∈ ℝ ↦ if(0 ≀ (πΉβ€˜π‘₯), (πΉβ€˜π‘₯), 0)))
27 ax-resscn 11116 . . . . . . . . 9 ℝ βŠ† β„‚
2827a1i 11 . . . . . . . 8 (𝐹 ∈ dom ∫1 β†’ ℝ βŠ† β„‚)
299fmpttd 7067 . . . . . . . . 9 (𝐹 ∈ dom ∫1 β†’ (π‘₯ ∈ ℝ ↦ if(0 ≀ (πΉβ€˜π‘₯), (πΉβ€˜π‘₯), 0)):β„βŸΆβ„)
3029ffnd 6673 . . . . . . . 8 (𝐹 ∈ dom ∫1 β†’ (π‘₯ ∈ ℝ ↦ if(0 ≀ (πΉβ€˜π‘₯), (πΉβ€˜π‘₯), 0)) Fn ℝ)
3128, 300pledm 25060 . . . . . . 7 (𝐹 ∈ dom ∫1 β†’ (0𝑝 ∘r ≀ (π‘₯ ∈ ℝ ↦ if(0 ≀ (πΉβ€˜π‘₯), (πΉβ€˜π‘₯), 0)) ↔ (ℝ Γ— {0}) ∘r ≀ (π‘₯ ∈ ℝ ↦ if(0 ≀ (πΉβ€˜π‘₯), (πΉβ€˜π‘₯), 0))))
3226, 31mpbird 257 . . . . . 6 (𝐹 ∈ dom ∫1 β†’ 0𝑝 ∘r ≀ (π‘₯ ∈ ℝ ↦ if(0 ≀ (πΉβ€˜π‘₯), (πΉβ€˜π‘₯), 0)))
33 itg2itg1 25124 . . . . . 6 (((π‘₯ ∈ ℝ ↦ if(0 ≀ (πΉβ€˜π‘₯), (πΉβ€˜π‘₯), 0)) ∈ dom ∫1 ∧ 0𝑝 ∘r ≀ (π‘₯ ∈ ℝ ↦ if(0 ≀ (πΉβ€˜π‘₯), (πΉβ€˜π‘₯), 0))) β†’ (∫2β€˜(π‘₯ ∈ ℝ ↦ if(0 ≀ (πΉβ€˜π‘₯), (πΉβ€˜π‘₯), 0))) = (∫1β€˜(π‘₯ ∈ ℝ ↦ if(0 ≀ (πΉβ€˜π‘₯), (πΉβ€˜π‘₯), 0))))
3414, 32, 33syl2anc 585 . . . . 5 (𝐹 ∈ dom ∫1 β†’ (∫2β€˜(π‘₯ ∈ ℝ ↦ if(0 ≀ (πΉβ€˜π‘₯), (πΉβ€˜π‘₯), 0))) = (∫1β€˜(π‘₯ ∈ ℝ ↦ if(0 ≀ (πΉβ€˜π‘₯), (πΉβ€˜π‘₯), 0))))
3517, 34eqtrd 2773 . . . 4 (𝐹 ∈ dom ∫1 β†’ βˆ«β„if(0 ≀ (πΉβ€˜π‘₯), (πΉβ€˜π‘₯), 0) dπ‘₯ = (∫1β€˜(π‘₯ ∈ ℝ ↦ if(0 ≀ (πΉβ€˜π‘₯), (πΉβ€˜π‘₯), 0))))
362renegcld 11590 . . . . . . 7 ((𝐹 ∈ dom ∫1 ∧ π‘₯ ∈ ℝ) β†’ -(πΉβ€˜π‘₯) ∈ ℝ)
37 ifcl 4535 . . . . . . 7 ((-(πΉβ€˜π‘₯) ∈ ℝ ∧ 0 ∈ ℝ) β†’ if(0 ≀ -(πΉβ€˜π‘₯), -(πΉβ€˜π‘₯), 0) ∈ ℝ)
3836, 7, 37sylancl 587 . . . . . 6 ((𝐹 ∈ dom ∫1 ∧ π‘₯ ∈ ℝ) β†’ if(0 ≀ -(πΉβ€˜π‘₯), -(πΉβ€˜π‘₯), 0) ∈ ℝ)
39 max1 13113 . . . . . . 7 ((0 ∈ ℝ ∧ -(πΉβ€˜π‘₯) ∈ ℝ) β†’ 0 ≀ if(0 ≀ -(πΉβ€˜π‘₯), -(πΉβ€˜π‘₯), 0))
407, 36, 39sylancr 588 . . . . . 6 ((𝐹 ∈ dom ∫1 ∧ π‘₯ ∈ ℝ) β†’ 0 ≀ if(0 ≀ -(πΉβ€˜π‘₯), -(πΉβ€˜π‘₯), 0))
41 neg1rr 12276 . . . . . . . . . . . 12 -1 ∈ ℝ
4241a1i 11 . . . . . . . . . . 11 ((𝐹 ∈ dom ∫1 ∧ π‘₯ ∈ ℝ) β†’ -1 ∈ ℝ)
43 fconstmpt 5698 . . . . . . . . . . . 12 (ℝ Γ— {-1}) = (π‘₯ ∈ ℝ ↦ -1)
4443a1i 11 . . . . . . . . . . 11 (𝐹 ∈ dom ∫1 β†’ (ℝ Γ— {-1}) = (π‘₯ ∈ ℝ ↦ -1))
4520, 42, 2, 44, 3offval2 7641 . . . . . . . . . 10 (𝐹 ∈ dom ∫1 β†’ ((ℝ Γ— {-1}) ∘f Β· 𝐹) = (π‘₯ ∈ ℝ ↦ (-1 Β· (πΉβ€˜π‘₯))))
462recnd 11191 . . . . . . . . . . . 12 ((𝐹 ∈ dom ∫1 ∧ π‘₯ ∈ ℝ) β†’ (πΉβ€˜π‘₯) ∈ β„‚)
4746mulm1d 11615 . . . . . . . . . . 11 ((𝐹 ∈ dom ∫1 ∧ π‘₯ ∈ ℝ) β†’ (-1 Β· (πΉβ€˜π‘₯)) = -(πΉβ€˜π‘₯))
4847mpteq2dva 5209 . . . . . . . . . 10 (𝐹 ∈ dom ∫1 β†’ (π‘₯ ∈ ℝ ↦ (-1 Β· (πΉβ€˜π‘₯))) = (π‘₯ ∈ ℝ ↦ -(πΉβ€˜π‘₯)))
4945, 48eqtrd 2773 . . . . . . . . 9 (𝐹 ∈ dom ∫1 β†’ ((ℝ Γ— {-1}) ∘f Β· 𝐹) = (π‘₯ ∈ ℝ ↦ -(πΉβ€˜π‘₯)))
5041a1i 11 . . . . . . . . . 10 (𝐹 ∈ dom ∫1 β†’ -1 ∈ ℝ)
5112, 50i1fmulc 25091 . . . . . . . . 9 (𝐹 ∈ dom ∫1 β†’ ((ℝ Γ— {-1}) ∘f Β· 𝐹) ∈ dom ∫1)
5249, 51eqeltrrd 2835 . . . . . . . 8 (𝐹 ∈ dom ∫1 β†’ (π‘₯ ∈ ℝ ↦ -(πΉβ€˜π‘₯)) ∈ dom ∫1)
5352i1fposd 25095 . . . . . . 7 (𝐹 ∈ dom ∫1 β†’ (π‘₯ ∈ ℝ ↦ if(0 ≀ -(πΉβ€˜π‘₯), -(πΉβ€˜π‘₯), 0)) ∈ dom ∫1)
54 i1fibl 25195 . . . . . . 7 ((π‘₯ ∈ ℝ ↦ if(0 ≀ -(πΉβ€˜π‘₯), -(πΉβ€˜π‘₯), 0)) ∈ dom ∫1 β†’ (π‘₯ ∈ ℝ ↦ if(0 ≀ -(πΉβ€˜π‘₯), -(πΉβ€˜π‘₯), 0)) ∈ 𝐿1)
5553, 54syl 17 . . . . . 6 (𝐹 ∈ dom ∫1 β†’ (π‘₯ ∈ ℝ ↦ if(0 ≀ -(πΉβ€˜π‘₯), -(πΉβ€˜π‘₯), 0)) ∈ 𝐿1)
5638, 40, 55itgitg2 25194 . . . . 5 (𝐹 ∈ dom ∫1 β†’ βˆ«β„if(0 ≀ -(πΉβ€˜π‘₯), -(πΉβ€˜π‘₯), 0) dπ‘₯ = (∫2β€˜(π‘₯ ∈ ℝ ↦ if(0 ≀ -(πΉβ€˜π‘₯), -(πΉβ€˜π‘₯), 0))))
5740ralrimiva 3140 . . . . . . . 8 (𝐹 ∈ dom ∫1 β†’ βˆ€π‘₯ ∈ ℝ 0 ≀ if(0 ≀ -(πΉβ€˜π‘₯), -(πΉβ€˜π‘₯), 0))
58 eqidd 2734 . . . . . . . . 9 (𝐹 ∈ dom ∫1 β†’ (π‘₯ ∈ ℝ ↦ if(0 ≀ -(πΉβ€˜π‘₯), -(πΉβ€˜π‘₯), 0)) = (π‘₯ ∈ ℝ ↦ if(0 ≀ -(πΉβ€˜π‘₯), -(πΉβ€˜π‘₯), 0)))
5920, 21, 38, 23, 58ofrfval2 7642 . . . . . . . 8 (𝐹 ∈ dom ∫1 β†’ ((ℝ Γ— {0}) ∘r ≀ (π‘₯ ∈ ℝ ↦ if(0 ≀ -(πΉβ€˜π‘₯), -(πΉβ€˜π‘₯), 0)) ↔ βˆ€π‘₯ ∈ ℝ 0 ≀ if(0 ≀ -(πΉβ€˜π‘₯), -(πΉβ€˜π‘₯), 0)))
6057, 59mpbird 257 . . . . . . 7 (𝐹 ∈ dom ∫1 β†’ (ℝ Γ— {0}) ∘r ≀ (π‘₯ ∈ ℝ ↦ if(0 ≀ -(πΉβ€˜π‘₯), -(πΉβ€˜π‘₯), 0)))
6138fmpttd 7067 . . . . . . . . 9 (𝐹 ∈ dom ∫1 β†’ (π‘₯ ∈ ℝ ↦ if(0 ≀ -(πΉβ€˜π‘₯), -(πΉβ€˜π‘₯), 0)):β„βŸΆβ„)
6261ffnd 6673 . . . . . . . 8 (𝐹 ∈ dom ∫1 β†’ (π‘₯ ∈ ℝ ↦ if(0 ≀ -(πΉβ€˜π‘₯), -(πΉβ€˜π‘₯), 0)) Fn ℝ)
6328, 620pledm 25060 . . . . . . 7 (𝐹 ∈ dom ∫1 β†’ (0𝑝 ∘r ≀ (π‘₯ ∈ ℝ ↦ if(0 ≀ -(πΉβ€˜π‘₯), -(πΉβ€˜π‘₯), 0)) ↔ (ℝ Γ— {0}) ∘r ≀ (π‘₯ ∈ ℝ ↦ if(0 ≀ -(πΉβ€˜π‘₯), -(πΉβ€˜π‘₯), 0))))
6460, 63mpbird 257 . . . . . 6 (𝐹 ∈ dom ∫1 β†’ 0𝑝 ∘r ≀ (π‘₯ ∈ ℝ ↦ if(0 ≀ -(πΉβ€˜π‘₯), -(πΉβ€˜π‘₯), 0)))
65 itg2itg1 25124 . . . . . 6 (((π‘₯ ∈ ℝ ↦ if(0 ≀ -(πΉβ€˜π‘₯), -(πΉβ€˜π‘₯), 0)) ∈ dom ∫1 ∧ 0𝑝 ∘r ≀ (π‘₯ ∈ ℝ ↦ if(0 ≀ -(πΉβ€˜π‘₯), -(πΉβ€˜π‘₯), 0))) β†’ (∫2β€˜(π‘₯ ∈ ℝ ↦ if(0 ≀ -(πΉβ€˜π‘₯), -(πΉβ€˜π‘₯), 0))) = (∫1β€˜(π‘₯ ∈ ℝ ↦ if(0 ≀ -(πΉβ€˜π‘₯), -(πΉβ€˜π‘₯), 0))))
6653, 64, 65syl2anc 585 . . . . 5 (𝐹 ∈ dom ∫1 β†’ (∫2β€˜(π‘₯ ∈ ℝ ↦ if(0 ≀ -(πΉβ€˜π‘₯), -(πΉβ€˜π‘₯), 0))) = (∫1β€˜(π‘₯ ∈ ℝ ↦ if(0 ≀ -(πΉβ€˜π‘₯), -(πΉβ€˜π‘₯), 0))))
6756, 66eqtrd 2773 . . . 4 (𝐹 ∈ dom ∫1 β†’ βˆ«β„if(0 ≀ -(πΉβ€˜π‘₯), -(πΉβ€˜π‘₯), 0) dπ‘₯ = (∫1β€˜(π‘₯ ∈ ℝ ↦ if(0 ≀ -(πΉβ€˜π‘₯), -(πΉβ€˜π‘₯), 0))))
6835, 67oveq12d 7379 . . 3 (𝐹 ∈ dom ∫1 β†’ (βˆ«β„if(0 ≀ (πΉβ€˜π‘₯), (πΉβ€˜π‘₯), 0) dπ‘₯ βˆ’ βˆ«β„if(0 ≀ -(πΉβ€˜π‘₯), -(πΉβ€˜π‘₯), 0) dπ‘₯) = ((∫1β€˜(π‘₯ ∈ ℝ ↦ if(0 ≀ (πΉβ€˜π‘₯), (πΉβ€˜π‘₯), 0))) βˆ’ (∫1β€˜(π‘₯ ∈ ℝ ↦ if(0 ≀ -(πΉβ€˜π‘₯), -(πΉβ€˜π‘₯), 0)))))
69 itg1sub 25097 . . . 4 (((π‘₯ ∈ ℝ ↦ if(0 ≀ (πΉβ€˜π‘₯), (πΉβ€˜π‘₯), 0)) ∈ dom ∫1 ∧ (π‘₯ ∈ ℝ ↦ if(0 ≀ -(πΉβ€˜π‘₯), -(πΉβ€˜π‘₯), 0)) ∈ dom ∫1) β†’ (∫1β€˜((π‘₯ ∈ ℝ ↦ if(0 ≀ (πΉβ€˜π‘₯), (πΉβ€˜π‘₯), 0)) ∘f βˆ’ (π‘₯ ∈ ℝ ↦ if(0 ≀ -(πΉβ€˜π‘₯), -(πΉβ€˜π‘₯), 0)))) = ((∫1β€˜(π‘₯ ∈ ℝ ↦ if(0 ≀ (πΉβ€˜π‘₯), (πΉβ€˜π‘₯), 0))) βˆ’ (∫1β€˜(π‘₯ ∈ ℝ ↦ if(0 ≀ -(πΉβ€˜π‘₯), -(πΉβ€˜π‘₯), 0)))))
7014, 53, 69syl2anc 585 . . 3 (𝐹 ∈ dom ∫1 β†’ (∫1β€˜((π‘₯ ∈ ℝ ↦ if(0 ≀ (πΉβ€˜π‘₯), (πΉβ€˜π‘₯), 0)) ∘f βˆ’ (π‘₯ ∈ ℝ ↦ if(0 ≀ -(πΉβ€˜π‘₯), -(πΉβ€˜π‘₯), 0)))) = ((∫1β€˜(π‘₯ ∈ ℝ ↦ if(0 ≀ (πΉβ€˜π‘₯), (πΉβ€˜π‘₯), 0))) βˆ’ (∫1β€˜(π‘₯ ∈ ℝ ↦ if(0 ≀ -(πΉβ€˜π‘₯), -(πΉβ€˜π‘₯), 0)))))
7168, 70eqtr4d 2776 . 2 (𝐹 ∈ dom ∫1 β†’ (βˆ«β„if(0 ≀ (πΉβ€˜π‘₯), (πΉβ€˜π‘₯), 0) dπ‘₯ βˆ’ βˆ«β„if(0 ≀ -(πΉβ€˜π‘₯), -(πΉβ€˜π‘₯), 0) dπ‘₯) = (∫1β€˜((π‘₯ ∈ ℝ ↦ if(0 ≀ (πΉβ€˜π‘₯), (πΉβ€˜π‘₯), 0)) ∘f βˆ’ (π‘₯ ∈ ℝ ↦ if(0 ≀ -(πΉβ€˜π‘₯), -(πΉβ€˜π‘₯), 0)))))
72 max0sub 13124 . . . . . 6 ((πΉβ€˜π‘₯) ∈ ℝ β†’ (if(0 ≀ (πΉβ€˜π‘₯), (πΉβ€˜π‘₯), 0) βˆ’ if(0 ≀ -(πΉβ€˜π‘₯), -(πΉβ€˜π‘₯), 0)) = (πΉβ€˜π‘₯))
732, 72syl 17 . . . . 5 ((𝐹 ∈ dom ∫1 ∧ π‘₯ ∈ ℝ) β†’ (if(0 ≀ (πΉβ€˜π‘₯), (πΉβ€˜π‘₯), 0) βˆ’ if(0 ≀ -(πΉβ€˜π‘₯), -(πΉβ€˜π‘₯), 0)) = (πΉβ€˜π‘₯))
7473mpteq2dva 5209 . . . 4 (𝐹 ∈ dom ∫1 β†’ (π‘₯ ∈ ℝ ↦ (if(0 ≀ (πΉβ€˜π‘₯), (πΉβ€˜π‘₯), 0) βˆ’ if(0 ≀ -(πΉβ€˜π‘₯), -(πΉβ€˜π‘₯), 0))) = (π‘₯ ∈ ℝ ↦ (πΉβ€˜π‘₯)))
7520, 9, 38, 24, 58offval2 7641 . . . 4 (𝐹 ∈ dom ∫1 β†’ ((π‘₯ ∈ ℝ ↦ if(0 ≀ (πΉβ€˜π‘₯), (πΉβ€˜π‘₯), 0)) ∘f βˆ’ (π‘₯ ∈ ℝ ↦ if(0 ≀ -(πΉβ€˜π‘₯), -(πΉβ€˜π‘₯), 0))) = (π‘₯ ∈ ℝ ↦ (if(0 ≀ (πΉβ€˜π‘₯), (πΉβ€˜π‘₯), 0) βˆ’ if(0 ≀ -(πΉβ€˜π‘₯), -(πΉβ€˜π‘₯), 0))))
7674, 75, 33eqtr4d 2783 . . 3 (𝐹 ∈ dom ∫1 β†’ ((π‘₯ ∈ ℝ ↦ if(0 ≀ (πΉβ€˜π‘₯), (πΉβ€˜π‘₯), 0)) ∘f βˆ’ (π‘₯ ∈ ℝ ↦ if(0 ≀ -(πΉβ€˜π‘₯), -(πΉβ€˜π‘₯), 0))) = 𝐹)
7776fveq2d 6850 . 2 (𝐹 ∈ dom ∫1 β†’ (∫1β€˜((π‘₯ ∈ ℝ ↦ if(0 ≀ (πΉβ€˜π‘₯), (πΉβ€˜π‘₯), 0)) ∘f βˆ’ (π‘₯ ∈ ℝ ↦ if(0 ≀ -(πΉβ€˜π‘₯), -(πΉβ€˜π‘₯), 0)))) = (∫1β€˜πΉ))
786, 71, 773eqtrd 2777 1 (𝐹 ∈ dom ∫1 β†’ βˆ«β„(πΉβ€˜π‘₯) dπ‘₯ = (∫1β€˜πΉ))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   = wceq 1542   ∈ wcel 2107  βˆ€wral 3061  Vcvv 3447   βŠ† wss 3914  ifcif 4490  {csn 4590   class class class wbr 5109   ↦ cmpt 5192   Γ— cxp 5635  dom cdm 5637  β€˜cfv 6500  (class class class)co 7361   ∘f cof 7619   ∘r cofr 7620  β„‚cc 11057  β„cr 11058  0cc0 11059  1c1 11060   Β· cmul 11064   ≀ cle 11198   βˆ’ cmin 11393  -cneg 11394  βˆ«1citg1 25002  βˆ«2citg2 25003  πΏ1cibl 25004  βˆ«citg 25005  0𝑝c0p 25056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5246  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676  ax-inf2 9585  ax-cnex 11115  ax-resscn 11116  ax-1cn 11117  ax-icn 11118  ax-addcl 11119  ax-addrcl 11120  ax-mulcl 11121  ax-mulrcl 11122  ax-mulcom 11123  ax-addass 11124  ax-mulass 11125  ax-distr 11126  ax-i2m1 11127  ax-1ne0 11128  ax-1rid 11129  ax-rnegex 11130  ax-rrecex 11131  ax-cnre 11132  ax-pre-lttri 11133  ax-pre-lttrn 11134  ax-pre-ltadd 11135  ax-pre-mulgt0 11136  ax-pre-sup 11137  ax-addf 11138
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3933  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-int 4912  df-iun 4960  df-disj 5075  df-br 5110  df-opab 5172  df-mpt 5193  df-tr 5227  df-id 5535  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5592  df-se 5593  df-we 5594  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-pred 6257  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-isom 6509  df-riota 7317  df-ov 7364  df-oprab 7365  df-mpo 7366  df-of 7621  df-ofr 7622  df-om 7807  df-1st 7925  df-2nd 7926  df-frecs 8216  df-wrecs 8247  df-recs 8321  df-rdg 8360  df-1o 8416  df-2o 8417  df-er 8654  df-map 8773  df-pm 8774  df-en 8890  df-dom 8891  df-sdom 8892  df-fin 8893  df-fi 9355  df-sup 9386  df-inf 9387  df-oi 9454  df-dju 9845  df-card 9883  df-pnf 11199  df-mnf 11200  df-xr 11201  df-ltxr 11202  df-le 11203  df-sub 11395  df-neg 11396  df-div 11821  df-nn 12162  df-2 12224  df-3 12225  df-4 12226  df-n0 12422  df-z 12508  df-uz 12772  df-q 12882  df-rp 12924  df-xneg 13041  df-xadd 13042  df-xmul 13043  df-ioo 13277  df-ico 13279  df-icc 13280  df-fz 13434  df-fzo 13577  df-fl 13706  df-mod 13784  df-seq 13916  df-exp 13977  df-hash 14240  df-cj 14993  df-re 14994  df-im 14995  df-sqrt 15129  df-abs 15130  df-clim 15379  df-sum 15580  df-rest 17312  df-topgen 17333  df-psmet 20811  df-xmet 20812  df-met 20813  df-bl 20814  df-mopn 20815  df-top 22266  df-topon 22283  df-bases 22319  df-cmp 22761  df-ovol 24851  df-vol 24852  df-mbf 25006  df-itg1 25007  df-itg2 25008  df-ibl 25009  df-itg 25010  df-0p 25057
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator