MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgitg1 Structured version   Visualization version   GIF version

Theorem itgitg1 25325
Description: Transfer an integral using ∫1 to an equivalent integral using ∫. (Contributed by Mario Carneiro, 6-Aug-2014.)
Assertion
Ref Expression
itgitg1 (𝐹 ∈ dom ∫1 β†’ βˆ«β„(πΉβ€˜π‘₯) dπ‘₯ = (∫1β€˜πΉ))
Distinct variable group:   π‘₯,𝐹

Proof of Theorem itgitg1
StepHypRef Expression
1 i1ff 25192 . . . 4 (𝐹 ∈ dom ∫1 β†’ 𝐹:β„βŸΆβ„)
21ffvelcdmda 7086 . . 3 ((𝐹 ∈ dom ∫1 ∧ π‘₯ ∈ ℝ) β†’ (πΉβ€˜π‘₯) ∈ ℝ)
31feqmptd 6960 . . . 4 (𝐹 ∈ dom ∫1 β†’ 𝐹 = (π‘₯ ∈ ℝ ↦ (πΉβ€˜π‘₯)))
4 i1fibl 25324 . . . 4 (𝐹 ∈ dom ∫1 β†’ 𝐹 ∈ 𝐿1)
53, 4eqeltrrd 2834 . . 3 (𝐹 ∈ dom ∫1 β†’ (π‘₯ ∈ ℝ ↦ (πΉβ€˜π‘₯)) ∈ 𝐿1)
62, 5itgreval 25313 . 2 (𝐹 ∈ dom ∫1 β†’ βˆ«β„(πΉβ€˜π‘₯) dπ‘₯ = (βˆ«β„if(0 ≀ (πΉβ€˜π‘₯), (πΉβ€˜π‘₯), 0) dπ‘₯ βˆ’ βˆ«β„if(0 ≀ -(πΉβ€˜π‘₯), -(πΉβ€˜π‘₯), 0) dπ‘₯))
7 0re 11215 . . . . . . 7 0 ∈ ℝ
8 ifcl 4573 . . . . . . 7 (((πΉβ€˜π‘₯) ∈ ℝ ∧ 0 ∈ ℝ) β†’ if(0 ≀ (πΉβ€˜π‘₯), (πΉβ€˜π‘₯), 0) ∈ ℝ)
92, 7, 8sylancl 586 . . . . . 6 ((𝐹 ∈ dom ∫1 ∧ π‘₯ ∈ ℝ) β†’ if(0 ≀ (πΉβ€˜π‘₯), (πΉβ€˜π‘₯), 0) ∈ ℝ)
10 max1 13163 . . . . . . 7 ((0 ∈ ℝ ∧ (πΉβ€˜π‘₯) ∈ ℝ) β†’ 0 ≀ if(0 ≀ (πΉβ€˜π‘₯), (πΉβ€˜π‘₯), 0))
117, 2, 10sylancr 587 . . . . . 6 ((𝐹 ∈ dom ∫1 ∧ π‘₯ ∈ ℝ) β†’ 0 ≀ if(0 ≀ (πΉβ€˜π‘₯), (πΉβ€˜π‘₯), 0))
12 id 22 . . . . . . . . 9 (𝐹 ∈ dom ∫1 β†’ 𝐹 ∈ dom ∫1)
133, 12eqeltrrd 2834 . . . . . . . 8 (𝐹 ∈ dom ∫1 β†’ (π‘₯ ∈ ℝ ↦ (πΉβ€˜π‘₯)) ∈ dom ∫1)
1413i1fposd 25224 . . . . . . 7 (𝐹 ∈ dom ∫1 β†’ (π‘₯ ∈ ℝ ↦ if(0 ≀ (πΉβ€˜π‘₯), (πΉβ€˜π‘₯), 0)) ∈ dom ∫1)
15 i1fibl 25324 . . . . . . 7 ((π‘₯ ∈ ℝ ↦ if(0 ≀ (πΉβ€˜π‘₯), (πΉβ€˜π‘₯), 0)) ∈ dom ∫1 β†’ (π‘₯ ∈ ℝ ↦ if(0 ≀ (πΉβ€˜π‘₯), (πΉβ€˜π‘₯), 0)) ∈ 𝐿1)
1614, 15syl 17 . . . . . 6 (𝐹 ∈ dom ∫1 β†’ (π‘₯ ∈ ℝ ↦ if(0 ≀ (πΉβ€˜π‘₯), (πΉβ€˜π‘₯), 0)) ∈ 𝐿1)
179, 11, 16itgitg2 25323 . . . . 5 (𝐹 ∈ dom ∫1 β†’ βˆ«β„if(0 ≀ (πΉβ€˜π‘₯), (πΉβ€˜π‘₯), 0) dπ‘₯ = (∫2β€˜(π‘₯ ∈ ℝ ↦ if(0 ≀ (πΉβ€˜π‘₯), (πΉβ€˜π‘₯), 0))))
1811ralrimiva 3146 . . . . . . . 8 (𝐹 ∈ dom ∫1 β†’ βˆ€π‘₯ ∈ ℝ 0 ≀ if(0 ≀ (πΉβ€˜π‘₯), (πΉβ€˜π‘₯), 0))
19 reex 11200 . . . . . . . . . 10 ℝ ∈ V
2019a1i 11 . . . . . . . . 9 (𝐹 ∈ dom ∫1 β†’ ℝ ∈ V)
217a1i 11 . . . . . . . . 9 ((𝐹 ∈ dom ∫1 ∧ π‘₯ ∈ ℝ) β†’ 0 ∈ ℝ)
22 fconstmpt 5738 . . . . . . . . . 10 (ℝ Γ— {0}) = (π‘₯ ∈ ℝ ↦ 0)
2322a1i 11 . . . . . . . . 9 (𝐹 ∈ dom ∫1 β†’ (ℝ Γ— {0}) = (π‘₯ ∈ ℝ ↦ 0))
24 eqidd 2733 . . . . . . . . 9 (𝐹 ∈ dom ∫1 β†’ (π‘₯ ∈ ℝ ↦ if(0 ≀ (πΉβ€˜π‘₯), (πΉβ€˜π‘₯), 0)) = (π‘₯ ∈ ℝ ↦ if(0 ≀ (πΉβ€˜π‘₯), (πΉβ€˜π‘₯), 0)))
2520, 21, 9, 23, 24ofrfval2 7690 . . . . . . . 8 (𝐹 ∈ dom ∫1 β†’ ((ℝ Γ— {0}) ∘r ≀ (π‘₯ ∈ ℝ ↦ if(0 ≀ (πΉβ€˜π‘₯), (πΉβ€˜π‘₯), 0)) ↔ βˆ€π‘₯ ∈ ℝ 0 ≀ if(0 ≀ (πΉβ€˜π‘₯), (πΉβ€˜π‘₯), 0)))
2618, 25mpbird 256 . . . . . . 7 (𝐹 ∈ dom ∫1 β†’ (ℝ Γ— {0}) ∘r ≀ (π‘₯ ∈ ℝ ↦ if(0 ≀ (πΉβ€˜π‘₯), (πΉβ€˜π‘₯), 0)))
27 ax-resscn 11166 . . . . . . . . 9 ℝ βŠ† β„‚
2827a1i 11 . . . . . . . 8 (𝐹 ∈ dom ∫1 β†’ ℝ βŠ† β„‚)
299fmpttd 7114 . . . . . . . . 9 (𝐹 ∈ dom ∫1 β†’ (π‘₯ ∈ ℝ ↦ if(0 ≀ (πΉβ€˜π‘₯), (πΉβ€˜π‘₯), 0)):β„βŸΆβ„)
3029ffnd 6718 . . . . . . . 8 (𝐹 ∈ dom ∫1 β†’ (π‘₯ ∈ ℝ ↦ if(0 ≀ (πΉβ€˜π‘₯), (πΉβ€˜π‘₯), 0)) Fn ℝ)
3128, 300pledm 25189 . . . . . . 7 (𝐹 ∈ dom ∫1 β†’ (0𝑝 ∘r ≀ (π‘₯ ∈ ℝ ↦ if(0 ≀ (πΉβ€˜π‘₯), (πΉβ€˜π‘₯), 0)) ↔ (ℝ Γ— {0}) ∘r ≀ (π‘₯ ∈ ℝ ↦ if(0 ≀ (πΉβ€˜π‘₯), (πΉβ€˜π‘₯), 0))))
3226, 31mpbird 256 . . . . . 6 (𝐹 ∈ dom ∫1 β†’ 0𝑝 ∘r ≀ (π‘₯ ∈ ℝ ↦ if(0 ≀ (πΉβ€˜π‘₯), (πΉβ€˜π‘₯), 0)))
33 itg2itg1 25253 . . . . . 6 (((π‘₯ ∈ ℝ ↦ if(0 ≀ (πΉβ€˜π‘₯), (πΉβ€˜π‘₯), 0)) ∈ dom ∫1 ∧ 0𝑝 ∘r ≀ (π‘₯ ∈ ℝ ↦ if(0 ≀ (πΉβ€˜π‘₯), (πΉβ€˜π‘₯), 0))) β†’ (∫2β€˜(π‘₯ ∈ ℝ ↦ if(0 ≀ (πΉβ€˜π‘₯), (πΉβ€˜π‘₯), 0))) = (∫1β€˜(π‘₯ ∈ ℝ ↦ if(0 ≀ (πΉβ€˜π‘₯), (πΉβ€˜π‘₯), 0))))
3414, 32, 33syl2anc 584 . . . . 5 (𝐹 ∈ dom ∫1 β†’ (∫2β€˜(π‘₯ ∈ ℝ ↦ if(0 ≀ (πΉβ€˜π‘₯), (πΉβ€˜π‘₯), 0))) = (∫1β€˜(π‘₯ ∈ ℝ ↦ if(0 ≀ (πΉβ€˜π‘₯), (πΉβ€˜π‘₯), 0))))
3517, 34eqtrd 2772 . . . 4 (𝐹 ∈ dom ∫1 β†’ βˆ«β„if(0 ≀ (πΉβ€˜π‘₯), (πΉβ€˜π‘₯), 0) dπ‘₯ = (∫1β€˜(π‘₯ ∈ ℝ ↦ if(0 ≀ (πΉβ€˜π‘₯), (πΉβ€˜π‘₯), 0))))
362renegcld 11640 . . . . . . 7 ((𝐹 ∈ dom ∫1 ∧ π‘₯ ∈ ℝ) β†’ -(πΉβ€˜π‘₯) ∈ ℝ)
37 ifcl 4573 . . . . . . 7 ((-(πΉβ€˜π‘₯) ∈ ℝ ∧ 0 ∈ ℝ) β†’ if(0 ≀ -(πΉβ€˜π‘₯), -(πΉβ€˜π‘₯), 0) ∈ ℝ)
3836, 7, 37sylancl 586 . . . . . 6 ((𝐹 ∈ dom ∫1 ∧ π‘₯ ∈ ℝ) β†’ if(0 ≀ -(πΉβ€˜π‘₯), -(πΉβ€˜π‘₯), 0) ∈ ℝ)
39 max1 13163 . . . . . . 7 ((0 ∈ ℝ ∧ -(πΉβ€˜π‘₯) ∈ ℝ) β†’ 0 ≀ if(0 ≀ -(πΉβ€˜π‘₯), -(πΉβ€˜π‘₯), 0))
407, 36, 39sylancr 587 . . . . . 6 ((𝐹 ∈ dom ∫1 ∧ π‘₯ ∈ ℝ) β†’ 0 ≀ if(0 ≀ -(πΉβ€˜π‘₯), -(πΉβ€˜π‘₯), 0))
41 neg1rr 12326 . . . . . . . . . . . 12 -1 ∈ ℝ
4241a1i 11 . . . . . . . . . . 11 ((𝐹 ∈ dom ∫1 ∧ π‘₯ ∈ ℝ) β†’ -1 ∈ ℝ)
43 fconstmpt 5738 . . . . . . . . . . . 12 (ℝ Γ— {-1}) = (π‘₯ ∈ ℝ ↦ -1)
4443a1i 11 . . . . . . . . . . 11 (𝐹 ∈ dom ∫1 β†’ (ℝ Γ— {-1}) = (π‘₯ ∈ ℝ ↦ -1))
4520, 42, 2, 44, 3offval2 7689 . . . . . . . . . 10 (𝐹 ∈ dom ∫1 β†’ ((ℝ Γ— {-1}) ∘f Β· 𝐹) = (π‘₯ ∈ ℝ ↦ (-1 Β· (πΉβ€˜π‘₯))))
462recnd 11241 . . . . . . . . . . . 12 ((𝐹 ∈ dom ∫1 ∧ π‘₯ ∈ ℝ) β†’ (πΉβ€˜π‘₯) ∈ β„‚)
4746mulm1d 11665 . . . . . . . . . . 11 ((𝐹 ∈ dom ∫1 ∧ π‘₯ ∈ ℝ) β†’ (-1 Β· (πΉβ€˜π‘₯)) = -(πΉβ€˜π‘₯))
4847mpteq2dva 5248 . . . . . . . . . 10 (𝐹 ∈ dom ∫1 β†’ (π‘₯ ∈ ℝ ↦ (-1 Β· (πΉβ€˜π‘₯))) = (π‘₯ ∈ ℝ ↦ -(πΉβ€˜π‘₯)))
4945, 48eqtrd 2772 . . . . . . . . 9 (𝐹 ∈ dom ∫1 β†’ ((ℝ Γ— {-1}) ∘f Β· 𝐹) = (π‘₯ ∈ ℝ ↦ -(πΉβ€˜π‘₯)))
5041a1i 11 . . . . . . . . . 10 (𝐹 ∈ dom ∫1 β†’ -1 ∈ ℝ)
5112, 50i1fmulc 25220 . . . . . . . . 9 (𝐹 ∈ dom ∫1 β†’ ((ℝ Γ— {-1}) ∘f Β· 𝐹) ∈ dom ∫1)
5249, 51eqeltrrd 2834 . . . . . . . 8 (𝐹 ∈ dom ∫1 β†’ (π‘₯ ∈ ℝ ↦ -(πΉβ€˜π‘₯)) ∈ dom ∫1)
5352i1fposd 25224 . . . . . . 7 (𝐹 ∈ dom ∫1 β†’ (π‘₯ ∈ ℝ ↦ if(0 ≀ -(πΉβ€˜π‘₯), -(πΉβ€˜π‘₯), 0)) ∈ dom ∫1)
54 i1fibl 25324 . . . . . . 7 ((π‘₯ ∈ ℝ ↦ if(0 ≀ -(πΉβ€˜π‘₯), -(πΉβ€˜π‘₯), 0)) ∈ dom ∫1 β†’ (π‘₯ ∈ ℝ ↦ if(0 ≀ -(πΉβ€˜π‘₯), -(πΉβ€˜π‘₯), 0)) ∈ 𝐿1)
5553, 54syl 17 . . . . . 6 (𝐹 ∈ dom ∫1 β†’ (π‘₯ ∈ ℝ ↦ if(0 ≀ -(πΉβ€˜π‘₯), -(πΉβ€˜π‘₯), 0)) ∈ 𝐿1)
5638, 40, 55itgitg2 25323 . . . . 5 (𝐹 ∈ dom ∫1 β†’ βˆ«β„if(0 ≀ -(πΉβ€˜π‘₯), -(πΉβ€˜π‘₯), 0) dπ‘₯ = (∫2β€˜(π‘₯ ∈ ℝ ↦ if(0 ≀ -(πΉβ€˜π‘₯), -(πΉβ€˜π‘₯), 0))))
5740ralrimiva 3146 . . . . . . . 8 (𝐹 ∈ dom ∫1 β†’ βˆ€π‘₯ ∈ ℝ 0 ≀ if(0 ≀ -(πΉβ€˜π‘₯), -(πΉβ€˜π‘₯), 0))
58 eqidd 2733 . . . . . . . . 9 (𝐹 ∈ dom ∫1 β†’ (π‘₯ ∈ ℝ ↦ if(0 ≀ -(πΉβ€˜π‘₯), -(πΉβ€˜π‘₯), 0)) = (π‘₯ ∈ ℝ ↦ if(0 ≀ -(πΉβ€˜π‘₯), -(πΉβ€˜π‘₯), 0)))
5920, 21, 38, 23, 58ofrfval2 7690 . . . . . . . 8 (𝐹 ∈ dom ∫1 β†’ ((ℝ Γ— {0}) ∘r ≀ (π‘₯ ∈ ℝ ↦ if(0 ≀ -(πΉβ€˜π‘₯), -(πΉβ€˜π‘₯), 0)) ↔ βˆ€π‘₯ ∈ ℝ 0 ≀ if(0 ≀ -(πΉβ€˜π‘₯), -(πΉβ€˜π‘₯), 0)))
6057, 59mpbird 256 . . . . . . 7 (𝐹 ∈ dom ∫1 β†’ (ℝ Γ— {0}) ∘r ≀ (π‘₯ ∈ ℝ ↦ if(0 ≀ -(πΉβ€˜π‘₯), -(πΉβ€˜π‘₯), 0)))
6138fmpttd 7114 . . . . . . . . 9 (𝐹 ∈ dom ∫1 β†’ (π‘₯ ∈ ℝ ↦ if(0 ≀ -(πΉβ€˜π‘₯), -(πΉβ€˜π‘₯), 0)):β„βŸΆβ„)
6261ffnd 6718 . . . . . . . 8 (𝐹 ∈ dom ∫1 β†’ (π‘₯ ∈ ℝ ↦ if(0 ≀ -(πΉβ€˜π‘₯), -(πΉβ€˜π‘₯), 0)) Fn ℝ)
6328, 620pledm 25189 . . . . . . 7 (𝐹 ∈ dom ∫1 β†’ (0𝑝 ∘r ≀ (π‘₯ ∈ ℝ ↦ if(0 ≀ -(πΉβ€˜π‘₯), -(πΉβ€˜π‘₯), 0)) ↔ (ℝ Γ— {0}) ∘r ≀ (π‘₯ ∈ ℝ ↦ if(0 ≀ -(πΉβ€˜π‘₯), -(πΉβ€˜π‘₯), 0))))
6460, 63mpbird 256 . . . . . 6 (𝐹 ∈ dom ∫1 β†’ 0𝑝 ∘r ≀ (π‘₯ ∈ ℝ ↦ if(0 ≀ -(πΉβ€˜π‘₯), -(πΉβ€˜π‘₯), 0)))
65 itg2itg1 25253 . . . . . 6 (((π‘₯ ∈ ℝ ↦ if(0 ≀ -(πΉβ€˜π‘₯), -(πΉβ€˜π‘₯), 0)) ∈ dom ∫1 ∧ 0𝑝 ∘r ≀ (π‘₯ ∈ ℝ ↦ if(0 ≀ -(πΉβ€˜π‘₯), -(πΉβ€˜π‘₯), 0))) β†’ (∫2β€˜(π‘₯ ∈ ℝ ↦ if(0 ≀ -(πΉβ€˜π‘₯), -(πΉβ€˜π‘₯), 0))) = (∫1β€˜(π‘₯ ∈ ℝ ↦ if(0 ≀ -(πΉβ€˜π‘₯), -(πΉβ€˜π‘₯), 0))))
6653, 64, 65syl2anc 584 . . . . 5 (𝐹 ∈ dom ∫1 β†’ (∫2β€˜(π‘₯ ∈ ℝ ↦ if(0 ≀ -(πΉβ€˜π‘₯), -(πΉβ€˜π‘₯), 0))) = (∫1β€˜(π‘₯ ∈ ℝ ↦ if(0 ≀ -(πΉβ€˜π‘₯), -(πΉβ€˜π‘₯), 0))))
6756, 66eqtrd 2772 . . . 4 (𝐹 ∈ dom ∫1 β†’ βˆ«β„if(0 ≀ -(πΉβ€˜π‘₯), -(πΉβ€˜π‘₯), 0) dπ‘₯ = (∫1β€˜(π‘₯ ∈ ℝ ↦ if(0 ≀ -(πΉβ€˜π‘₯), -(πΉβ€˜π‘₯), 0))))
6835, 67oveq12d 7426 . . 3 (𝐹 ∈ dom ∫1 β†’ (βˆ«β„if(0 ≀ (πΉβ€˜π‘₯), (πΉβ€˜π‘₯), 0) dπ‘₯ βˆ’ βˆ«β„if(0 ≀ -(πΉβ€˜π‘₯), -(πΉβ€˜π‘₯), 0) dπ‘₯) = ((∫1β€˜(π‘₯ ∈ ℝ ↦ if(0 ≀ (πΉβ€˜π‘₯), (πΉβ€˜π‘₯), 0))) βˆ’ (∫1β€˜(π‘₯ ∈ ℝ ↦ if(0 ≀ -(πΉβ€˜π‘₯), -(πΉβ€˜π‘₯), 0)))))
69 itg1sub 25226 . . . 4 (((π‘₯ ∈ ℝ ↦ if(0 ≀ (πΉβ€˜π‘₯), (πΉβ€˜π‘₯), 0)) ∈ dom ∫1 ∧ (π‘₯ ∈ ℝ ↦ if(0 ≀ -(πΉβ€˜π‘₯), -(πΉβ€˜π‘₯), 0)) ∈ dom ∫1) β†’ (∫1β€˜((π‘₯ ∈ ℝ ↦ if(0 ≀ (πΉβ€˜π‘₯), (πΉβ€˜π‘₯), 0)) ∘f βˆ’ (π‘₯ ∈ ℝ ↦ if(0 ≀ -(πΉβ€˜π‘₯), -(πΉβ€˜π‘₯), 0)))) = ((∫1β€˜(π‘₯ ∈ ℝ ↦ if(0 ≀ (πΉβ€˜π‘₯), (πΉβ€˜π‘₯), 0))) βˆ’ (∫1β€˜(π‘₯ ∈ ℝ ↦ if(0 ≀ -(πΉβ€˜π‘₯), -(πΉβ€˜π‘₯), 0)))))
7014, 53, 69syl2anc 584 . . 3 (𝐹 ∈ dom ∫1 β†’ (∫1β€˜((π‘₯ ∈ ℝ ↦ if(0 ≀ (πΉβ€˜π‘₯), (πΉβ€˜π‘₯), 0)) ∘f βˆ’ (π‘₯ ∈ ℝ ↦ if(0 ≀ -(πΉβ€˜π‘₯), -(πΉβ€˜π‘₯), 0)))) = ((∫1β€˜(π‘₯ ∈ ℝ ↦ if(0 ≀ (πΉβ€˜π‘₯), (πΉβ€˜π‘₯), 0))) βˆ’ (∫1β€˜(π‘₯ ∈ ℝ ↦ if(0 ≀ -(πΉβ€˜π‘₯), -(πΉβ€˜π‘₯), 0)))))
7168, 70eqtr4d 2775 . 2 (𝐹 ∈ dom ∫1 β†’ (βˆ«β„if(0 ≀ (πΉβ€˜π‘₯), (πΉβ€˜π‘₯), 0) dπ‘₯ βˆ’ βˆ«β„if(0 ≀ -(πΉβ€˜π‘₯), -(πΉβ€˜π‘₯), 0) dπ‘₯) = (∫1β€˜((π‘₯ ∈ ℝ ↦ if(0 ≀ (πΉβ€˜π‘₯), (πΉβ€˜π‘₯), 0)) ∘f βˆ’ (π‘₯ ∈ ℝ ↦ if(0 ≀ -(πΉβ€˜π‘₯), -(πΉβ€˜π‘₯), 0)))))
72 max0sub 13174 . . . . . 6 ((πΉβ€˜π‘₯) ∈ ℝ β†’ (if(0 ≀ (πΉβ€˜π‘₯), (πΉβ€˜π‘₯), 0) βˆ’ if(0 ≀ -(πΉβ€˜π‘₯), -(πΉβ€˜π‘₯), 0)) = (πΉβ€˜π‘₯))
732, 72syl 17 . . . . 5 ((𝐹 ∈ dom ∫1 ∧ π‘₯ ∈ ℝ) β†’ (if(0 ≀ (πΉβ€˜π‘₯), (πΉβ€˜π‘₯), 0) βˆ’ if(0 ≀ -(πΉβ€˜π‘₯), -(πΉβ€˜π‘₯), 0)) = (πΉβ€˜π‘₯))
7473mpteq2dva 5248 . . . 4 (𝐹 ∈ dom ∫1 β†’ (π‘₯ ∈ ℝ ↦ (if(0 ≀ (πΉβ€˜π‘₯), (πΉβ€˜π‘₯), 0) βˆ’ if(0 ≀ -(πΉβ€˜π‘₯), -(πΉβ€˜π‘₯), 0))) = (π‘₯ ∈ ℝ ↦ (πΉβ€˜π‘₯)))
7520, 9, 38, 24, 58offval2 7689 . . . 4 (𝐹 ∈ dom ∫1 β†’ ((π‘₯ ∈ ℝ ↦ if(0 ≀ (πΉβ€˜π‘₯), (πΉβ€˜π‘₯), 0)) ∘f βˆ’ (π‘₯ ∈ ℝ ↦ if(0 ≀ -(πΉβ€˜π‘₯), -(πΉβ€˜π‘₯), 0))) = (π‘₯ ∈ ℝ ↦ (if(0 ≀ (πΉβ€˜π‘₯), (πΉβ€˜π‘₯), 0) βˆ’ if(0 ≀ -(πΉβ€˜π‘₯), -(πΉβ€˜π‘₯), 0))))
7674, 75, 33eqtr4d 2782 . . 3 (𝐹 ∈ dom ∫1 β†’ ((π‘₯ ∈ ℝ ↦ if(0 ≀ (πΉβ€˜π‘₯), (πΉβ€˜π‘₯), 0)) ∘f βˆ’ (π‘₯ ∈ ℝ ↦ if(0 ≀ -(πΉβ€˜π‘₯), -(πΉβ€˜π‘₯), 0))) = 𝐹)
7776fveq2d 6895 . 2 (𝐹 ∈ dom ∫1 β†’ (∫1β€˜((π‘₯ ∈ ℝ ↦ if(0 ≀ (πΉβ€˜π‘₯), (πΉβ€˜π‘₯), 0)) ∘f βˆ’ (π‘₯ ∈ ℝ ↦ if(0 ≀ -(πΉβ€˜π‘₯), -(πΉβ€˜π‘₯), 0)))) = (∫1β€˜πΉ))
786, 71, 773eqtrd 2776 1 (𝐹 ∈ dom ∫1 β†’ βˆ«β„(πΉβ€˜π‘₯) dπ‘₯ = (∫1β€˜πΉ))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061  Vcvv 3474   βŠ† wss 3948  ifcif 4528  {csn 4628   class class class wbr 5148   ↦ cmpt 5231   Γ— cxp 5674  dom cdm 5676  β€˜cfv 6543  (class class class)co 7408   ∘f cof 7667   ∘r cofr 7668  β„‚cc 11107  β„cr 11108  0cc0 11109  1c1 11110   Β· cmul 11114   ≀ cle 11248   βˆ’ cmin 11443  -cneg 11444  βˆ«1citg1 25131  βˆ«2citg2 25132  πΏ1cibl 25133  βˆ«citg 25134  0𝑝c0p 25185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-inf2 9635  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186  ax-pre-sup 11187  ax-addf 11188
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-disj 5114  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-of 7669  df-ofr 7670  df-om 7855  df-1st 7974  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-1o 8465  df-2o 8466  df-er 8702  df-map 8821  df-pm 8822  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-fi 9405  df-sup 9436  df-inf 9437  df-oi 9504  df-dju 9895  df-card 9933  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-div 11871  df-nn 12212  df-2 12274  df-3 12275  df-4 12276  df-n0 12472  df-z 12558  df-uz 12822  df-q 12932  df-rp 12974  df-xneg 13091  df-xadd 13092  df-xmul 13093  df-ioo 13327  df-ico 13329  df-icc 13330  df-fz 13484  df-fzo 13627  df-fl 13756  df-mod 13834  df-seq 13966  df-exp 14027  df-hash 14290  df-cj 15045  df-re 15046  df-im 15047  df-sqrt 15181  df-abs 15182  df-clim 15431  df-sum 15632  df-rest 17367  df-topgen 17388  df-psmet 20935  df-xmet 20936  df-met 20937  df-bl 20938  df-mopn 20939  df-top 22395  df-topon 22412  df-bases 22448  df-cmp 22890  df-ovol 24980  df-vol 24981  df-mbf 25135  df-itg1 25136  df-itg2 25137  df-ibl 25138  df-itg 25139  df-0p 25186
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator