![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 2atmat0 | Structured version Visualization version GIF version |
Description: The meet of two unequal lines (expressed as joins of atoms) is an atom or zero. (Contributed by NM, 2-Dec-2012.) |
Ref | Expression |
---|---|
2atmatz.j | β’ β¨ = (joinβπΎ) |
2atmatz.m | β’ β§ = (meetβπΎ) |
2atmatz.z | β’ 0 = (0.βπΎ) |
2atmatz.a | β’ π΄ = (AtomsβπΎ) |
Ref | Expression |
---|---|
2atmat0 | β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ (π β¨ π) β (π β¨ π))) β (((π β¨ π) β§ (π β¨ π)) β π΄ β¨ ((π β¨ π) β§ (π β¨ π)) = 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 483 | . 2 β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ (π β¨ π) β (π β¨ π))) β (πΎ β HL β§ π β π΄ β§ π β π΄)) | |
2 | simpr1 1194 | . 2 β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ (π β¨ π) β (π β¨ π))) β π β π΄) | |
3 | simpr2 1195 | . . 3 β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ (π β¨ π) β (π β¨ π))) β π β π΄) | |
4 | 3 | orcd 871 | . 2 β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ (π β¨ π) β (π β¨ π))) β (π β π΄ β¨ π = 0 )) |
5 | simpr3 1196 | . 2 β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ (π β¨ π) β (π β¨ π))) β (π β¨ π) β (π β¨ π)) | |
6 | 2atmatz.j | . . 3 β’ β¨ = (joinβπΎ) | |
7 | 2atmatz.m | . . 3 β’ β§ = (meetβπΎ) | |
8 | 2atmatz.z | . . 3 β’ 0 = (0.βπΎ) | |
9 | 2atmatz.a | . . 3 β’ π΄ = (AtomsβπΎ) | |
10 | 6, 7, 8, 9 | 2at0mat0 38384 | . 2 β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ (π β π΄ β¨ π = 0 ) β§ (π β¨ π) β (π β¨ π))) β (((π β¨ π) β§ (π β¨ π)) β π΄ β¨ ((π β¨ π) β§ (π β¨ π)) = 0 )) |
11 | 1, 2, 4, 5, 10 | syl13anc 1372 | 1 β’ (((πΎ β HL β§ π β π΄ β§ π β π΄) β§ (π β π΄ β§ π β π΄ β§ (π β¨ π) β (π β¨ π))) β (((π β¨ π) β§ (π β¨ π)) β π΄ β¨ ((π β¨ π) β§ (π β¨ π)) = 0 )) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 β¨ wo 845 β§ w3a 1087 = wceq 1541 β wcel 2106 β wne 2940 βcfv 6540 (class class class)co 7405 joincjn 18260 meetcmee 18261 0.cp0 18372 Atomscatm 38121 HLchlt 38208 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-proset 18244 df-poset 18262 df-plt 18279 df-lub 18295 df-glb 18296 df-join 18297 df-meet 18298 df-p0 18374 df-lat 18381 df-clat 18448 df-oposet 38034 df-ol 38036 df-oml 38037 df-covers 38124 df-ats 38125 df-atl 38156 df-cvlat 38180 df-hlat 38209 df-llines 38357 |
This theorem is referenced by: 2atm 38386 trlval3 39046 cdleme22b 39200 cdlemg31b0N 39553 cdlemh 39676 |
Copyright terms: Public domain | W3C validator |