| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > addcan | Structured version Visualization version GIF version | ||
| Description: Cancellation law for addition. Theorem I.1 of [Apostol] p. 18. (Contributed by NM, 22-Nov-1994.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| addcan | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) = (𝐴 + 𝐶) ↔ 𝐵 = 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnegex2 11305 | . . 3 ⊢ (𝐴 ∈ ℂ → ∃𝑥 ∈ ℂ (𝑥 + 𝐴) = 0) | |
| 2 | 1 | 3ad2ant1 1133 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ∃𝑥 ∈ ℂ (𝑥 + 𝐴) = 0) |
| 3 | oveq2 7363 | . . . 4 ⊢ ((𝐴 + 𝐵) = (𝐴 + 𝐶) → (𝑥 + (𝐴 + 𝐵)) = (𝑥 + (𝐴 + 𝐶))) | |
| 4 | simprr 772 | . . . . . . 7 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℂ ∧ (𝑥 + 𝐴) = 0)) → (𝑥 + 𝐴) = 0) | |
| 5 | 4 | oveq1d 7370 | . . . . . 6 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℂ ∧ (𝑥 + 𝐴) = 0)) → ((𝑥 + 𝐴) + 𝐵) = (0 + 𝐵)) |
| 6 | simprl 770 | . . . . . . 7 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℂ ∧ (𝑥 + 𝐴) = 0)) → 𝑥 ∈ ℂ) | |
| 7 | simpl1 1192 | . . . . . . 7 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℂ ∧ (𝑥 + 𝐴) = 0)) → 𝐴 ∈ ℂ) | |
| 8 | simpl2 1193 | . . . . . . 7 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℂ ∧ (𝑥 + 𝐴) = 0)) → 𝐵 ∈ ℂ) | |
| 9 | 6, 7, 8 | addassd 11144 | . . . . . 6 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℂ ∧ (𝑥 + 𝐴) = 0)) → ((𝑥 + 𝐴) + 𝐵) = (𝑥 + (𝐴 + 𝐵))) |
| 10 | addlid 11306 | . . . . . . 7 ⊢ (𝐵 ∈ ℂ → (0 + 𝐵) = 𝐵) | |
| 11 | 8, 10 | syl 17 | . . . . . 6 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℂ ∧ (𝑥 + 𝐴) = 0)) → (0 + 𝐵) = 𝐵) |
| 12 | 5, 9, 11 | 3eqtr3d 2776 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℂ ∧ (𝑥 + 𝐴) = 0)) → (𝑥 + (𝐴 + 𝐵)) = 𝐵) |
| 13 | 4 | oveq1d 7370 | . . . . . 6 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℂ ∧ (𝑥 + 𝐴) = 0)) → ((𝑥 + 𝐴) + 𝐶) = (0 + 𝐶)) |
| 14 | simpl3 1194 | . . . . . . 7 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℂ ∧ (𝑥 + 𝐴) = 0)) → 𝐶 ∈ ℂ) | |
| 15 | 6, 7, 14 | addassd 11144 | . . . . . 6 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℂ ∧ (𝑥 + 𝐴) = 0)) → ((𝑥 + 𝐴) + 𝐶) = (𝑥 + (𝐴 + 𝐶))) |
| 16 | addlid 11306 | . . . . . . 7 ⊢ (𝐶 ∈ ℂ → (0 + 𝐶) = 𝐶) | |
| 17 | 14, 16 | syl 17 | . . . . . 6 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℂ ∧ (𝑥 + 𝐴) = 0)) → (0 + 𝐶) = 𝐶) |
| 18 | 13, 15, 17 | 3eqtr3d 2776 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℂ ∧ (𝑥 + 𝐴) = 0)) → (𝑥 + (𝐴 + 𝐶)) = 𝐶) |
| 19 | 12, 18 | eqeq12d 2749 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℂ ∧ (𝑥 + 𝐴) = 0)) → ((𝑥 + (𝐴 + 𝐵)) = (𝑥 + (𝐴 + 𝐶)) ↔ 𝐵 = 𝐶)) |
| 20 | 3, 19 | imbitrid 244 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℂ ∧ (𝑥 + 𝐴) = 0)) → ((𝐴 + 𝐵) = (𝐴 + 𝐶) → 𝐵 = 𝐶)) |
| 21 | oveq2 7363 | . . 3 ⊢ (𝐵 = 𝐶 → (𝐴 + 𝐵) = (𝐴 + 𝐶)) | |
| 22 | 20, 21 | impbid1 225 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑥 ∈ ℂ ∧ (𝑥 + 𝐴) = 0)) → ((𝐴 + 𝐵) = (𝐴 + 𝐶) ↔ 𝐵 = 𝐶)) |
| 23 | 2, 22 | rexlimddv 3141 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) = (𝐴 + 𝐶) ↔ 𝐵 = 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ∃wrex 3058 (class class class)co 7355 ℂcc 11014 0cc0 11016 + caddc 11019 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-resscn 11073 ax-1cn 11074 ax-icn 11075 ax-addcl 11076 ax-addrcl 11077 ax-mulcl 11078 ax-mulrcl 11079 ax-mulcom 11080 ax-addass 11081 ax-mulass 11082 ax-distr 11083 ax-i2m1 11084 ax-1ne0 11085 ax-1rid 11086 ax-rnegex 11087 ax-rrecex 11088 ax-cnre 11089 ax-pre-lttri 11090 ax-pre-lttrn 11091 ax-pre-ltadd 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-po 5529 df-so 5530 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-er 8631 df-en 8879 df-dom 8880 df-sdom 8881 df-pnf 11158 df-mnf 11159 df-ltxr 11161 |
| This theorem is referenced by: addcom 11309 addcani 11316 addcomd 11325 addcand 11326 subcan 11426 addsubeq0 47410 |
| Copyright terms: Public domain | W3C validator |