Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  addsubeq0 Structured version   Visualization version   GIF version

Theorem addsubeq0 47458
Description: The sum of two complex numbers is equal to the difference of these two complex numbers iff the subtrahend is 0. (Contributed by AV, 8-May-2023.)
Assertion
Ref Expression
addsubeq0 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) = (𝐴𝐵) ↔ 𝐵 = 0))

Proof of Theorem addsubeq0
StepHypRef Expression
1 negsub 11420 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + -𝐵) = (𝐴𝐵))
21eqcomd 2739 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐵) = (𝐴 + -𝐵))
32eqeq2d 2744 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) = (𝐴𝐵) ↔ (𝐴 + 𝐵) = (𝐴 + -𝐵)))
4 negcl 11371 . . . 4 (𝐵 ∈ ℂ → -𝐵 ∈ ℂ)
54adantl 481 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -𝐵 ∈ ℂ)
6 addcan 11308 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ -𝐵 ∈ ℂ) → ((𝐴 + 𝐵) = (𝐴 + -𝐵) ↔ 𝐵 = -𝐵))
75, 6mpd3an3 1464 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) = (𝐴 + -𝐵) ↔ 𝐵 = -𝐵))
8 eqneg 11852 . . 3 (𝐵 ∈ ℂ → (𝐵 = -𝐵𝐵 = 0))
98adantl 481 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵 = -𝐵𝐵 = 0))
103, 7, 93bitrd 305 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) = (𝐴𝐵) ↔ 𝐵 = 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  (class class class)co 7355  cc 11015  0cc0 11017   + caddc 11020  cmin 11355  -cneg 11356
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-po 5529  df-so 5530  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-er 8631  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358
This theorem is referenced by:  inlinecirc02plem  48948
  Copyright terms: Public domain W3C validator