Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > basendxnn | Structured version Visualization version GIF version |
Description: The index value of the base set extractor is a positive integer. This property should be ensured for every concrete coding because otherwise it could not be used in an extensible structure (slots must be positive integers). (Contributed by AV, 23-Sep-2020.) (Proof shortened by AV, 13-Oct-2024.) |
Ref | Expression |
---|---|
basendxnn | ⊢ (Base‘ndx) ∈ ℕ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | basendx 16910 | . 2 ⊢ (Base‘ndx) = 1 | |
2 | 1nn 11973 | . 2 ⊢ 1 ∈ ℕ | |
3 | 1, 2 | eqeltri 2835 | 1 ⊢ (Base‘ndx) ∈ ℕ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 ‘cfv 6428 1c1 10861 ℕcn 11962 ndxcnx 16883 Basecbs 16901 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7580 ax-cnex 10916 ax-1cn 10918 ax-addcl 10920 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3433 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4259 df-if 4462 df-pw 4537 df-sn 4564 df-pr 4566 df-op 4570 df-uni 4842 df-iun 4928 df-br 5076 df-opab 5138 df-mpt 5159 df-tr 5193 df-id 5486 df-eprel 5492 df-po 5500 df-so 5501 df-fr 5541 df-we 5543 df-xp 5592 df-rel 5593 df-cnv 5594 df-co 5595 df-dm 5596 df-rn 5597 df-res 5598 df-ima 5599 df-pred 6197 df-ord 6264 df-on 6265 df-lim 6266 df-suc 6267 df-iota 6386 df-fun 6430 df-fn 6431 df-f 6432 df-f1 6433 df-fo 6434 df-f1o 6435 df-fv 6436 df-ov 7272 df-om 7705 df-2nd 7823 df-frecs 8086 df-wrecs 8117 df-recs 8191 df-rdg 8230 df-nn 11963 df-slot 16872 df-ndx 16884 df-base 16902 |
This theorem is referenced by: 1strstr1 16917 2strstr1 16926 basendxnplusgndx 16981 tsetndxnbasendx 17055 plendxnbasendx 17069 dsndxnbasendx 17088 unifndxnbasendx 17098 basendxnedgfndx 27354 structvtxvallem 27379 |
Copyright terms: Public domain | W3C validator |