![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > basendxnnOLD | Structured version Visualization version GIF version |
Description: Obsolete proof of basendxnn 17218 as of 13-Oct-2024. (Contributed by AV, 23-Sep-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
basendxnnOLD | ⊢ (Base‘ndx) ∈ ℕ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-base 17209 | . . 3 ⊢ Base = Slot 1 | |
2 | 1nn 12270 | . . 3 ⊢ 1 ∈ ℕ | |
3 | 1, 2 | ndxarg 17193 | . 2 ⊢ (Base‘ndx) = 1 |
4 | 3, 2 | eqeltri 2821 | 1 ⊢ (Base‘ndx) ∈ ℕ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2098 ‘cfv 6553 1c1 11155 ℕcn 12259 ndxcnx 17190 Basecbs 17208 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5303 ax-nul 5310 ax-pow 5368 ax-pr 5432 ax-un 7745 ax-cnex 11210 ax-1cn 11212 ax-addcl 11214 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4325 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5579 df-eprel 5585 df-po 5593 df-so 5594 df-fr 5636 df-we 5638 df-xp 5687 df-rel 5688 df-cnv 5689 df-co 5690 df-dm 5691 df-rn 5692 df-res 5693 df-ima 5694 df-pred 6311 df-ord 6378 df-on 6379 df-lim 6380 df-suc 6381 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-ov 7426 df-om 7876 df-2nd 8003 df-frecs 8295 df-wrecs 8326 df-recs 8400 df-rdg 8439 df-nn 12260 df-slot 17179 df-ndx 17191 df-base 17209 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |