HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  leop3 Structured version   Visualization version   GIF version

Theorem leop3 31811
Description: Operator ordering in terms of a positive operator. Definition of operator ordering in [Retherford] p. 49. (Contributed by NM, 23-Jul-2006.) (New usage is discouraged.)
Assertion
Ref Expression
leop3 ((๐‘‡ โˆˆ HrmOp โˆง ๐‘ˆ โˆˆ HrmOp) โ†’ (๐‘‡ โ‰คop ๐‘ˆ โ†” 0hop โ‰คop (๐‘ˆ โˆ’op ๐‘‡)))

Proof of Theorem leop3
Dummy variable ๐‘ฅ is distinct from all other variables.
StepHypRef Expression
1 leop 31809 . 2 ((๐‘‡ โˆˆ HrmOp โˆง ๐‘ˆ โˆˆ HrmOp) โ†’ (๐‘‡ โ‰คop ๐‘ˆ โ†” โˆ€๐‘ฅ โˆˆ โ„‹ 0 โ‰ค (((๐‘ˆ โˆ’op ๐‘‡)โ€˜๐‘ฅ) ยทih ๐‘ฅ)))
2 0hmop 31669 . . . 4 0hop โˆˆ HrmOp
3 hmopd 31708 . . . . 5 ((๐‘ˆ โˆˆ HrmOp โˆง ๐‘‡ โˆˆ HrmOp) โ†’ (๐‘ˆ โˆ’op ๐‘‡) โˆˆ HrmOp)
43ancoms 458 . . . 4 ((๐‘‡ โˆˆ HrmOp โˆง ๐‘ˆ โˆˆ HrmOp) โ†’ (๐‘ˆ โˆ’op ๐‘‡) โˆˆ HrmOp)
5 leop2 31810 . . . 4 (( 0hop โˆˆ HrmOp โˆง (๐‘ˆ โˆ’op ๐‘‡) โˆˆ HrmOp) โ†’ ( 0hop โ‰คop (๐‘ˆ โˆ’op ๐‘‡) โ†” โˆ€๐‘ฅ โˆˆ โ„‹ (( 0hop โ€˜๐‘ฅ) ยทih ๐‘ฅ) โ‰ค (((๐‘ˆ โˆ’op ๐‘‡)โ€˜๐‘ฅ) ยทih ๐‘ฅ)))
62, 4, 5sylancr 586 . . 3 ((๐‘‡ โˆˆ HrmOp โˆง ๐‘ˆ โˆˆ HrmOp) โ†’ ( 0hop โ‰คop (๐‘ˆ โˆ’op ๐‘‡) โ†” โˆ€๐‘ฅ โˆˆ โ„‹ (( 0hop โ€˜๐‘ฅ) ยทih ๐‘ฅ) โ‰ค (((๐‘ˆ โˆ’op ๐‘‡)โ€˜๐‘ฅ) ยทih ๐‘ฅ)))
7 ho0val 31436 . . . . . . 7 (๐‘ฅ โˆˆ โ„‹ โ†’ ( 0hop โ€˜๐‘ฅ) = 0โ„Ž)
87oveq1d 7427 . . . . . 6 (๐‘ฅ โˆˆ โ„‹ โ†’ (( 0hop โ€˜๐‘ฅ) ยทih ๐‘ฅ) = (0โ„Ž ยทih ๐‘ฅ))
9 hi01 30782 . . . . . 6 (๐‘ฅ โˆˆ โ„‹ โ†’ (0โ„Ž ยทih ๐‘ฅ) = 0)
108, 9eqtrd 2771 . . . . 5 (๐‘ฅ โˆˆ โ„‹ โ†’ (( 0hop โ€˜๐‘ฅ) ยทih ๐‘ฅ) = 0)
1110breq1d 5158 . . . 4 (๐‘ฅ โˆˆ โ„‹ โ†’ ((( 0hop โ€˜๐‘ฅ) ยทih ๐‘ฅ) โ‰ค (((๐‘ˆ โˆ’op ๐‘‡)โ€˜๐‘ฅ) ยทih ๐‘ฅ) โ†” 0 โ‰ค (((๐‘ˆ โˆ’op ๐‘‡)โ€˜๐‘ฅ) ยทih ๐‘ฅ)))
1211ralbiia 3090 . . 3 (โˆ€๐‘ฅ โˆˆ โ„‹ (( 0hop โ€˜๐‘ฅ) ยทih ๐‘ฅ) โ‰ค (((๐‘ˆ โˆ’op ๐‘‡)โ€˜๐‘ฅ) ยทih ๐‘ฅ) โ†” โˆ€๐‘ฅ โˆˆ โ„‹ 0 โ‰ค (((๐‘ˆ โˆ’op ๐‘‡)โ€˜๐‘ฅ) ยทih ๐‘ฅ))
136, 12bitr2di 288 . 2 ((๐‘‡ โˆˆ HrmOp โˆง ๐‘ˆ โˆˆ HrmOp) โ†’ (โˆ€๐‘ฅ โˆˆ โ„‹ 0 โ‰ค (((๐‘ˆ โˆ’op ๐‘‡)โ€˜๐‘ฅ) ยทih ๐‘ฅ) โ†” 0hop โ‰คop (๐‘ˆ โˆ’op ๐‘‡)))
141, 13bitrd 279 1 ((๐‘‡ โˆˆ HrmOp โˆง ๐‘ˆ โˆˆ HrmOp) โ†’ (๐‘‡ โ‰คop ๐‘ˆ โ†” 0hop โ‰คop (๐‘ˆ โˆ’op ๐‘‡)))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โ†” wb 205   โˆง wa 395   โˆˆ wcel 2105  โˆ€wral 3060   class class class wbr 5148  โ€˜cfv 6543  (class class class)co 7412  0cc0 11116   โ‰ค cle 11256   โ„‹chba 30605   ยทih csp 30608  0โ„Žc0v 30610   โˆ’op chod 30626   0hop ch0o 30629  HrmOpcho 30636   โ‰คop cleo 30644
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-inf2 9642  ax-cc 10436  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193  ax-pre-sup 11194  ax-addf 11195  ax-mulf 11196  ax-hilex 30685  ax-hfvadd 30686  ax-hvcom 30687  ax-hvass 30688  ax-hv0cl 30689  ax-hvaddid 30690  ax-hfvmul 30691  ax-hvmulid 30692  ax-hvmulass 30693  ax-hvdistr1 30694  ax-hvdistr2 30695  ax-hvmul0 30696  ax-hfi 30765  ax-his1 30768  ax-his2 30769  ax-his3 30770  ax-his4 30771  ax-hcompl 30888
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-of 7674  df-om 7860  df-1st 7979  df-2nd 7980  df-supp 8152  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-1o 8472  df-2o 8473  df-oadd 8476  df-omul 8477  df-er 8709  df-map 8828  df-pm 8829  df-ixp 8898  df-en 8946  df-dom 8947  df-sdom 8948  df-fin 8949  df-fsupp 9368  df-fi 9412  df-sup 9443  df-inf 9444  df-oi 9511  df-card 9940  df-acn 9943  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-div 11879  df-nn 12220  df-2 12282  df-3 12283  df-4 12284  df-5 12285  df-6 12286  df-7 12287  df-8 12288  df-9 12289  df-n0 12480  df-z 12566  df-dec 12685  df-uz 12830  df-q 12940  df-rp 12982  df-xneg 13099  df-xadd 13100  df-xmul 13101  df-ioo 13335  df-ico 13337  df-icc 13338  df-fz 13492  df-fzo 13635  df-fl 13764  df-seq 13974  df-exp 14035  df-hash 14298  df-cj 15053  df-re 15054  df-im 15055  df-sqrt 15189  df-abs 15190  df-clim 15439  df-rlim 15440  df-sum 15640  df-struct 17087  df-sets 17104  df-slot 17122  df-ndx 17134  df-base 17152  df-ress 17181  df-plusg 17217  df-mulr 17218  df-starv 17219  df-sca 17220  df-vsca 17221  df-ip 17222  df-tset 17223  df-ple 17224  df-ds 17226  df-unif 17227  df-hom 17228  df-cco 17229  df-rest 17375  df-topn 17376  df-0g 17394  df-gsum 17395  df-topgen 17396  df-pt 17397  df-prds 17400  df-xrs 17455  df-qtop 17460  df-imas 17461  df-xps 17463  df-mre 17537  df-mrc 17538  df-acs 17540  df-mgm 18571  df-sgrp 18650  df-mnd 18666  df-submnd 18712  df-mulg 18994  df-cntz 19229  df-cmn 19698  df-psmet 21225  df-xmet 21226  df-met 21227  df-bl 21228  df-mopn 21229  df-fbas 21230  df-fg 21231  df-cnfld 21234  df-top 22716  df-topon 22733  df-topsp 22755  df-bases 22769  df-cld 22843  df-ntr 22844  df-cls 22845  df-nei 22922  df-cn 23051  df-cnp 23052  df-lm 23053  df-haus 23139  df-tx 23386  df-hmeo 23579  df-fil 23670  df-fm 23762  df-flim 23763  df-flf 23764  df-xms 24146  df-ms 24147  df-tms 24148  df-cfil 25103  df-cau 25104  df-cmet 25105  df-grpo 30179  df-gid 30180  df-ginv 30181  df-gdiv 30182  df-ablo 30231  df-vc 30245  df-nv 30278  df-va 30281  df-ba 30282  df-sm 30283  df-0v 30284  df-vs 30285  df-nmcv 30286  df-ims 30287  df-dip 30387  df-ssp 30408  df-ph 30499  df-cbn 30549  df-hnorm 30654  df-hba 30655  df-hvsub 30657  df-hlim 30658  df-hcau 30659  df-sh 30893  df-ch 30907  df-oc 30938  df-ch0 30939  df-shs 30994  df-pjh 31081  df-hosum 31416  df-homul 31417  df-hodif 31418  df-h0op 31434  df-hmop 31530  df-leop 31538
This theorem is referenced by:  leopmul2i  31821  opsqrlem6  31831
  Copyright terms: Public domain W3C validator