Proof of Theorem nn0sub
Step | Hyp | Ref
| Expression |
1 | | nn0re 12172 |
. . . 4
⊢ (𝑀 ∈ ℕ0
→ 𝑀 ∈
ℝ) |
2 | | nn0re 12172 |
. . . 4
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
ℝ) |
3 | | leloe 10992 |
. . . 4
⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀 ≤ 𝑁 ↔ (𝑀 < 𝑁 ∨ 𝑀 = 𝑁))) |
4 | 1, 2, 3 | syl2an 595 |
. . 3
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → (𝑀 ≤ 𝑁 ↔ (𝑀 < 𝑁 ∨ 𝑀 = 𝑁))) |
5 | | elnn0 12165 |
. . . . . 6
⊢ (𝑁 ∈ ℕ0
↔ (𝑁 ∈ ℕ
∨ 𝑁 =
0)) |
6 | | elnn0 12165 |
. . . . . . . 8
⊢ (𝑀 ∈ ℕ0
↔ (𝑀 ∈ ℕ
∨ 𝑀 =
0)) |
7 | | nnsub 11947 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 < 𝑁 ↔ (𝑁 − 𝑀) ∈ ℕ)) |
8 | 7 | ex 412 |
. . . . . . . . 9
⊢ (𝑀 ∈ ℕ → (𝑁 ∈ ℕ → (𝑀 < 𝑁 ↔ (𝑁 − 𝑀) ∈ ℕ))) |
9 | | nngt0 11934 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ → 0 <
𝑁) |
10 | | nncn 11911 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℂ) |
11 | 10 | subid1d 11251 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℕ → (𝑁 − 0) = 𝑁) |
12 | | id 22 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℕ) |
13 | 11, 12 | eqeltrd 2839 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ → (𝑁 − 0) ∈
ℕ) |
14 | 9, 13 | 2thd 264 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ → (0 <
𝑁 ↔ (𝑁 − 0) ∈
ℕ)) |
15 | | breq1 5073 |
. . . . . . . . . . 11
⊢ (𝑀 = 0 → (𝑀 < 𝑁 ↔ 0 < 𝑁)) |
16 | | oveq2 7263 |
. . . . . . . . . . . 12
⊢ (𝑀 = 0 → (𝑁 − 𝑀) = (𝑁 − 0)) |
17 | 16 | eleq1d 2823 |
. . . . . . . . . . 11
⊢ (𝑀 = 0 → ((𝑁 − 𝑀) ∈ ℕ ↔ (𝑁 − 0) ∈
ℕ)) |
18 | 15, 17 | bibi12d 345 |
. . . . . . . . . 10
⊢ (𝑀 = 0 → ((𝑀 < 𝑁 ↔ (𝑁 − 𝑀) ∈ ℕ) ↔ (0 < 𝑁 ↔ (𝑁 − 0) ∈
ℕ))) |
19 | 14, 18 | syl5ibr 245 |
. . . . . . . . 9
⊢ (𝑀 = 0 → (𝑁 ∈ ℕ → (𝑀 < 𝑁 ↔ (𝑁 − 𝑀) ∈ ℕ))) |
20 | 8, 19 | jaoi 853 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℕ ∨ 𝑀 = 0) → (𝑁 ∈ ℕ → (𝑀 < 𝑁 ↔ (𝑁 − 𝑀) ∈ ℕ))) |
21 | 6, 20 | sylbi 216 |
. . . . . . 7
⊢ (𝑀 ∈ ℕ0
→ (𝑁 ∈ ℕ
→ (𝑀 < 𝑁 ↔ (𝑁 − 𝑀) ∈ ℕ))) |
22 | | nn0nlt0 12189 |
. . . . . . . . . 10
⊢ (𝑀 ∈ ℕ0
→ ¬ 𝑀 <
0) |
23 | 22 | pm2.21d 121 |
. . . . . . . . 9
⊢ (𝑀 ∈ ℕ0
→ (𝑀 < 0 → (0
− 𝑀) ∈
ℕ)) |
24 | | nngt0 11934 |
. . . . . . . . . 10
⊢ ((0
− 𝑀) ∈ ℕ
→ 0 < (0 − 𝑀)) |
25 | | 0re 10908 |
. . . . . . . . . . 11
⊢ 0 ∈
ℝ |
26 | | posdif 11398 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ ℝ ∧ 0 ∈
ℝ) → (𝑀 < 0
↔ 0 < (0 − 𝑀))) |
27 | 1, 25, 26 | sylancl 585 |
. . . . . . . . . 10
⊢ (𝑀 ∈ ℕ0
→ (𝑀 < 0 ↔ 0
< (0 − 𝑀))) |
28 | 24, 27 | syl5ibr 245 |
. . . . . . . . 9
⊢ (𝑀 ∈ ℕ0
→ ((0 − 𝑀)
∈ ℕ → 𝑀
< 0)) |
29 | 23, 28 | impbid 211 |
. . . . . . . 8
⊢ (𝑀 ∈ ℕ0
→ (𝑀 < 0 ↔ (0
− 𝑀) ∈
ℕ)) |
30 | | breq2 5074 |
. . . . . . . . 9
⊢ (𝑁 = 0 → (𝑀 < 𝑁 ↔ 𝑀 < 0)) |
31 | | oveq1 7262 |
. . . . . . . . . 10
⊢ (𝑁 = 0 → (𝑁 − 𝑀) = (0 − 𝑀)) |
32 | 31 | eleq1d 2823 |
. . . . . . . . 9
⊢ (𝑁 = 0 → ((𝑁 − 𝑀) ∈ ℕ ↔ (0 − 𝑀) ∈
ℕ)) |
33 | 30, 32 | bibi12d 345 |
. . . . . . . 8
⊢ (𝑁 = 0 → ((𝑀 < 𝑁 ↔ (𝑁 − 𝑀) ∈ ℕ) ↔ (𝑀 < 0 ↔ (0 − 𝑀) ∈ ℕ))) |
34 | 29, 33 | syl5ibrcom 246 |
. . . . . . 7
⊢ (𝑀 ∈ ℕ0
→ (𝑁 = 0 → (𝑀 < 𝑁 ↔ (𝑁 − 𝑀) ∈ ℕ))) |
35 | 21, 34 | jaod 855 |
. . . . . 6
⊢ (𝑀 ∈ ℕ0
→ ((𝑁 ∈ ℕ
∨ 𝑁 = 0) → (𝑀 < 𝑁 ↔ (𝑁 − 𝑀) ∈ ℕ))) |
36 | 5, 35 | syl5bi 241 |
. . . . 5
⊢ (𝑀 ∈ ℕ0
→ (𝑁 ∈
ℕ0 → (𝑀 < 𝑁 ↔ (𝑁 − 𝑀) ∈ ℕ))) |
37 | 36 | imp 406 |
. . . 4
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → (𝑀 < 𝑁 ↔ (𝑁 − 𝑀) ∈ ℕ)) |
38 | | nn0cn 12173 |
. . . . . 6
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
ℂ) |
39 | | nn0cn 12173 |
. . . . . 6
⊢ (𝑀 ∈ ℕ0
→ 𝑀 ∈
ℂ) |
40 | | subeq0 11177 |
. . . . . 6
⊢ ((𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ) → ((𝑁 − 𝑀) = 0 ↔ 𝑁 = 𝑀)) |
41 | 38, 39, 40 | syl2anr 596 |
. . . . 5
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → ((𝑁 − 𝑀) = 0 ↔ 𝑁 = 𝑀)) |
42 | | eqcom 2745 |
. . . . 5
⊢ (𝑁 = 𝑀 ↔ 𝑀 = 𝑁) |
43 | 41, 42 | bitr2di 287 |
. . . 4
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → (𝑀 = 𝑁 ↔ (𝑁 − 𝑀) = 0)) |
44 | 37, 43 | orbi12d 915 |
. . 3
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → ((𝑀 < 𝑁 ∨ 𝑀 = 𝑁) ↔ ((𝑁 − 𝑀) ∈ ℕ ∨ (𝑁 − 𝑀) = 0))) |
45 | 4, 44 | bitrd 278 |
. 2
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → (𝑀 ≤ 𝑁 ↔ ((𝑁 − 𝑀) ∈ ℕ ∨ (𝑁 − 𝑀) = 0))) |
46 | | elnn0 12165 |
. 2
⊢ ((𝑁 − 𝑀) ∈ ℕ0 ↔ ((𝑁 − 𝑀) ∈ ℕ ∨ (𝑁 − 𝑀) = 0)) |
47 | 45, 46 | bitr4di 288 |
1
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → (𝑀 ≤ 𝑁 ↔ (𝑁 − 𝑀) ∈
ℕ0)) |