MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0sub Structured version   Visualization version   GIF version

Theorem nn0sub 11939
Description: Subtraction of nonnegative integers. (Contributed by NM, 9-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.)
Assertion
Ref Expression
nn0sub ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀𝑁 ↔ (𝑁𝑀) ∈ ℕ0))

Proof of Theorem nn0sub
StepHypRef Expression
1 nn0re 11898 . . . 4 (𝑀 ∈ ℕ0𝑀 ∈ ℝ)
2 nn0re 11898 . . . 4 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
3 leloe 10720 . . . 4 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀𝑁 ↔ (𝑀 < 𝑁𝑀 = 𝑁)))
41, 2, 3syl2an 598 . . 3 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀𝑁 ↔ (𝑀 < 𝑁𝑀 = 𝑁)))
5 elnn0 11891 . . . . . 6 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
6 elnn0 11891 . . . . . . . 8 (𝑀 ∈ ℕ0 ↔ (𝑀 ∈ ℕ ∨ 𝑀 = 0))
7 nnsub 11673 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 < 𝑁 ↔ (𝑁𝑀) ∈ ℕ))
87ex 416 . . . . . . . . 9 (𝑀 ∈ ℕ → (𝑁 ∈ ℕ → (𝑀 < 𝑁 ↔ (𝑁𝑀) ∈ ℕ)))
9 nngt0 11660 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 0 < 𝑁)
10 nncn 11637 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
1110subid1d 10979 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (𝑁 − 0) = 𝑁)
12 id 22 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ)
1311, 12eqeltrd 2893 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (𝑁 − 0) ∈ ℕ)
149, 132thd 268 . . . . . . . . . 10 (𝑁 ∈ ℕ → (0 < 𝑁 ↔ (𝑁 − 0) ∈ ℕ))
15 breq1 5036 . . . . . . . . . . 11 (𝑀 = 0 → (𝑀 < 𝑁 ↔ 0 < 𝑁))
16 oveq2 7147 . . . . . . . . . . . 12 (𝑀 = 0 → (𝑁𝑀) = (𝑁 − 0))
1716eleq1d 2877 . . . . . . . . . . 11 (𝑀 = 0 → ((𝑁𝑀) ∈ ℕ ↔ (𝑁 − 0) ∈ ℕ))
1815, 17bibi12d 349 . . . . . . . . . 10 (𝑀 = 0 → ((𝑀 < 𝑁 ↔ (𝑁𝑀) ∈ ℕ) ↔ (0 < 𝑁 ↔ (𝑁 − 0) ∈ ℕ)))
1914, 18syl5ibr 249 . . . . . . . . 9 (𝑀 = 0 → (𝑁 ∈ ℕ → (𝑀 < 𝑁 ↔ (𝑁𝑀) ∈ ℕ)))
208, 19jaoi 854 . . . . . . . 8 ((𝑀 ∈ ℕ ∨ 𝑀 = 0) → (𝑁 ∈ ℕ → (𝑀 < 𝑁 ↔ (𝑁𝑀) ∈ ℕ)))
216, 20sylbi 220 . . . . . . 7 (𝑀 ∈ ℕ0 → (𝑁 ∈ ℕ → (𝑀 < 𝑁 ↔ (𝑁𝑀) ∈ ℕ)))
22 nn0nlt0 11915 . . . . . . . . . 10 (𝑀 ∈ ℕ0 → ¬ 𝑀 < 0)
2322pm2.21d 121 . . . . . . . . 9 (𝑀 ∈ ℕ0 → (𝑀 < 0 → (0 − 𝑀) ∈ ℕ))
24 nngt0 11660 . . . . . . . . . 10 ((0 − 𝑀) ∈ ℕ → 0 < (0 − 𝑀))
25 0re 10636 . . . . . . . . . . 11 0 ∈ ℝ
26 posdif 11126 . . . . . . . . . . 11 ((𝑀 ∈ ℝ ∧ 0 ∈ ℝ) → (𝑀 < 0 ↔ 0 < (0 − 𝑀)))
271, 25, 26sylancl 589 . . . . . . . . . 10 (𝑀 ∈ ℕ0 → (𝑀 < 0 ↔ 0 < (0 − 𝑀)))
2824, 27syl5ibr 249 . . . . . . . . 9 (𝑀 ∈ ℕ0 → ((0 − 𝑀) ∈ ℕ → 𝑀 < 0))
2923, 28impbid 215 . . . . . . . 8 (𝑀 ∈ ℕ0 → (𝑀 < 0 ↔ (0 − 𝑀) ∈ ℕ))
30 breq2 5037 . . . . . . . . 9 (𝑁 = 0 → (𝑀 < 𝑁𝑀 < 0))
31 oveq1 7146 . . . . . . . . . 10 (𝑁 = 0 → (𝑁𝑀) = (0 − 𝑀))
3231eleq1d 2877 . . . . . . . . 9 (𝑁 = 0 → ((𝑁𝑀) ∈ ℕ ↔ (0 − 𝑀) ∈ ℕ))
3330, 32bibi12d 349 . . . . . . . 8 (𝑁 = 0 → ((𝑀 < 𝑁 ↔ (𝑁𝑀) ∈ ℕ) ↔ (𝑀 < 0 ↔ (0 − 𝑀) ∈ ℕ)))
3429, 33syl5ibrcom 250 . . . . . . 7 (𝑀 ∈ ℕ0 → (𝑁 = 0 → (𝑀 < 𝑁 ↔ (𝑁𝑀) ∈ ℕ)))
3521, 34jaod 856 . . . . . 6 (𝑀 ∈ ℕ0 → ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (𝑀 < 𝑁 ↔ (𝑁𝑀) ∈ ℕ)))
365, 35syl5bi 245 . . . . 5 (𝑀 ∈ ℕ0 → (𝑁 ∈ ℕ0 → (𝑀 < 𝑁 ↔ (𝑁𝑀) ∈ ℕ)))
3736imp 410 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 < 𝑁 ↔ (𝑁𝑀) ∈ ℕ))
38 nn0cn 11899 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
39 nn0cn 11899 . . . . . 6 (𝑀 ∈ ℕ0𝑀 ∈ ℂ)
40 subeq0 10905 . . . . . 6 ((𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ) → ((𝑁𝑀) = 0 ↔ 𝑁 = 𝑀))
4138, 39, 40syl2anr 599 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑁𝑀) = 0 ↔ 𝑁 = 𝑀))
42 eqcom 2808 . . . . 5 (𝑁 = 𝑀𝑀 = 𝑁)
4341, 42syl6rbb 291 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 = 𝑁 ↔ (𝑁𝑀) = 0))
4437, 43orbi12d 916 . . 3 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑀 < 𝑁𝑀 = 𝑁) ↔ ((𝑁𝑀) ∈ ℕ ∨ (𝑁𝑀) = 0)))
454, 44bitrd 282 . 2 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀𝑁 ↔ ((𝑁𝑀) ∈ ℕ ∨ (𝑁𝑀) = 0)))
46 elnn0 11891 . 2 ((𝑁𝑀) ∈ ℕ0 ↔ ((𝑁𝑀) ∈ ℕ ∨ (𝑁𝑀) = 0))
4745, 46syl6bbr 292 1 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀𝑁 ↔ (𝑁𝑀) ∈ ℕ0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 844   = wceq 1538  wcel 2112   class class class wbr 5033  (class class class)co 7139  cc 10528  cr 10529  0cc0 10530   < clt 10668  cle 10669  cmin 10863  cn 11629  0cn0 11889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-n0 11890
This theorem is referenced by:  ltsubnn0  11940  nn0n0n1ge2  11954  elz2  11991  nn0sub2  12035  fz0fzdiffz0  13015  ubmelfzo  13101  repswcshw  14169  swrd2lsw  14309  2swrd2eqwrdeq  14310  psrbagcon  20613  coe1tmmul2  20909  aaliou3lem6  24948  basellem5  25674  crctcshwlkn0lem5  27604  eucrctshift  28032  pfxlsw2ccat  30656  wrdt2ind  30657  omndmul3  30768  lpadleft  32068  lcmineqlem1  39316  lcmineqlem2  39317  jm2.27c  39945  binomcxplemnn0  41050  dvnxpaek  42581  subsubelfzo0  43880  fmtnoprmfac2lem1  44080  digexp  45018  itcovalt2lem2lem1  45084  ackval42  45107
  Copyright terms: Public domain W3C validator