MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0sub Structured version   Visualization version   GIF version

Theorem nn0sub 11941
Description: Subtraction of nonnegative integers. (Contributed by NM, 9-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.)
Assertion
Ref Expression
nn0sub ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀𝑁 ↔ (𝑁𝑀) ∈ ℕ0))

Proof of Theorem nn0sub
StepHypRef Expression
1 nn0re 11900 . . . 4 (𝑀 ∈ ℕ0𝑀 ∈ ℝ)
2 nn0re 11900 . . . 4 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
3 leloe 10721 . . . 4 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀𝑁 ↔ (𝑀 < 𝑁𝑀 = 𝑁)))
41, 2, 3syl2an 597 . . 3 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀𝑁 ↔ (𝑀 < 𝑁𝑀 = 𝑁)))
5 elnn0 11893 . . . . . 6 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
6 elnn0 11893 . . . . . . . 8 (𝑀 ∈ ℕ0 ↔ (𝑀 ∈ ℕ ∨ 𝑀 = 0))
7 nnsub 11675 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 < 𝑁 ↔ (𝑁𝑀) ∈ ℕ))
87ex 415 . . . . . . . . 9 (𝑀 ∈ ℕ → (𝑁 ∈ ℕ → (𝑀 < 𝑁 ↔ (𝑁𝑀) ∈ ℕ)))
9 nngt0 11662 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 0 < 𝑁)
10 nncn 11640 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
1110subid1d 10980 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (𝑁 − 0) = 𝑁)
12 id 22 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ)
1311, 12eqeltrd 2913 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (𝑁 − 0) ∈ ℕ)
149, 132thd 267 . . . . . . . . . 10 (𝑁 ∈ ℕ → (0 < 𝑁 ↔ (𝑁 − 0) ∈ ℕ))
15 breq1 5061 . . . . . . . . . . 11 (𝑀 = 0 → (𝑀 < 𝑁 ↔ 0 < 𝑁))
16 oveq2 7158 . . . . . . . . . . . 12 (𝑀 = 0 → (𝑁𝑀) = (𝑁 − 0))
1716eleq1d 2897 . . . . . . . . . . 11 (𝑀 = 0 → ((𝑁𝑀) ∈ ℕ ↔ (𝑁 − 0) ∈ ℕ))
1815, 17bibi12d 348 . . . . . . . . . 10 (𝑀 = 0 → ((𝑀 < 𝑁 ↔ (𝑁𝑀) ∈ ℕ) ↔ (0 < 𝑁 ↔ (𝑁 − 0) ∈ ℕ)))
1914, 18syl5ibr 248 . . . . . . . . 9 (𝑀 = 0 → (𝑁 ∈ ℕ → (𝑀 < 𝑁 ↔ (𝑁𝑀) ∈ ℕ)))
208, 19jaoi 853 . . . . . . . 8 ((𝑀 ∈ ℕ ∨ 𝑀 = 0) → (𝑁 ∈ ℕ → (𝑀 < 𝑁 ↔ (𝑁𝑀) ∈ ℕ)))
216, 20sylbi 219 . . . . . . 7 (𝑀 ∈ ℕ0 → (𝑁 ∈ ℕ → (𝑀 < 𝑁 ↔ (𝑁𝑀) ∈ ℕ)))
22 nn0nlt0 11917 . . . . . . . . . 10 (𝑀 ∈ ℕ0 → ¬ 𝑀 < 0)
2322pm2.21d 121 . . . . . . . . 9 (𝑀 ∈ ℕ0 → (𝑀 < 0 → (0 − 𝑀) ∈ ℕ))
24 nngt0 11662 . . . . . . . . . 10 ((0 − 𝑀) ∈ ℕ → 0 < (0 − 𝑀))
25 0re 10637 . . . . . . . . . . 11 0 ∈ ℝ
26 posdif 11127 . . . . . . . . . . 11 ((𝑀 ∈ ℝ ∧ 0 ∈ ℝ) → (𝑀 < 0 ↔ 0 < (0 − 𝑀)))
271, 25, 26sylancl 588 . . . . . . . . . 10 (𝑀 ∈ ℕ0 → (𝑀 < 0 ↔ 0 < (0 − 𝑀)))
2824, 27syl5ibr 248 . . . . . . . . 9 (𝑀 ∈ ℕ0 → ((0 − 𝑀) ∈ ℕ → 𝑀 < 0))
2923, 28impbid 214 . . . . . . . 8 (𝑀 ∈ ℕ0 → (𝑀 < 0 ↔ (0 − 𝑀) ∈ ℕ))
30 breq2 5062 . . . . . . . . 9 (𝑁 = 0 → (𝑀 < 𝑁𝑀 < 0))
31 oveq1 7157 . . . . . . . . . 10 (𝑁 = 0 → (𝑁𝑀) = (0 − 𝑀))
3231eleq1d 2897 . . . . . . . . 9 (𝑁 = 0 → ((𝑁𝑀) ∈ ℕ ↔ (0 − 𝑀) ∈ ℕ))
3330, 32bibi12d 348 . . . . . . . 8 (𝑁 = 0 → ((𝑀 < 𝑁 ↔ (𝑁𝑀) ∈ ℕ) ↔ (𝑀 < 0 ↔ (0 − 𝑀) ∈ ℕ)))
3429, 33syl5ibrcom 249 . . . . . . 7 (𝑀 ∈ ℕ0 → (𝑁 = 0 → (𝑀 < 𝑁 ↔ (𝑁𝑀) ∈ ℕ)))
3521, 34jaod 855 . . . . . 6 (𝑀 ∈ ℕ0 → ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (𝑀 < 𝑁 ↔ (𝑁𝑀) ∈ ℕ)))
365, 35syl5bi 244 . . . . 5 (𝑀 ∈ ℕ0 → (𝑁 ∈ ℕ0 → (𝑀 < 𝑁 ↔ (𝑁𝑀) ∈ ℕ)))
3736imp 409 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 < 𝑁 ↔ (𝑁𝑀) ∈ ℕ))
38 nn0cn 11901 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
39 nn0cn 11901 . . . . . 6 (𝑀 ∈ ℕ0𝑀 ∈ ℂ)
40 subeq0 10906 . . . . . 6 ((𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ) → ((𝑁𝑀) = 0 ↔ 𝑁 = 𝑀))
4138, 39, 40syl2anr 598 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑁𝑀) = 0 ↔ 𝑁 = 𝑀))
42 eqcom 2828 . . . . 5 (𝑁 = 𝑀𝑀 = 𝑁)
4341, 42syl6rbb 290 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 = 𝑁 ↔ (𝑁𝑀) = 0))
4437, 43orbi12d 915 . . 3 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑀 < 𝑁𝑀 = 𝑁) ↔ ((𝑁𝑀) ∈ ℕ ∨ (𝑁𝑀) = 0)))
454, 44bitrd 281 . 2 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀𝑁 ↔ ((𝑁𝑀) ∈ ℕ ∨ (𝑁𝑀) = 0)))
46 elnn0 11893 . 2 ((𝑁𝑀) ∈ ℕ0 ↔ ((𝑁𝑀) ∈ ℕ ∨ (𝑁𝑀) = 0))
4745, 46syl6bbr 291 1 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀𝑁 ↔ (𝑁𝑀) ∈ ℕ0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843   = wceq 1533  wcel 2110   class class class wbr 5058  (class class class)co 7150  cc 10529  cr 10530  0cc0 10531   < clt 10669  cle 10670  cmin 10864  cn 11632  0cn0 11891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-n0 11892
This theorem is referenced by:  ltsubnn0  11942  nn0n0n1ge2  11956  elz2  11993  nn0sub2  12037  fz0fzdiffz0  13010  ubmelfzo  13096  repswcshw  14168  swrd2lsw  14308  2swrd2eqwrdeq  14309  psrbagcon  20145  coe1tmmul2  20438  aaliou3lem6  24931  basellem5  25656  crctcshwlkn0lem5  27586  eucrctshift  28016  pfxlsw2ccat  30621  wrdt2ind  30622  omndmul3  30709  lpadleft  31949  jm2.27c  39597  binomcxplemnn0  40674  dvnxpaek  42220  subsubelfzo0  43520  fmtnoprmfac2lem1  43722  digexp  44661
  Copyright terms: Public domain W3C validator