Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgposval Structured version   Visualization version   GIF version

Theorem itgposval 23968
 Description: The integral of a nonnegative function. (Contributed by Mario Carneiro, 31-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypotheses
Ref Expression
iblrelem.1 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
itgreval.2 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
itgposval.3 ((𝜑𝑥𝐴) → 0 ≤ 𝐵)
Assertion
Ref Expression
itgposval (𝜑 → ∫𝐴𝐵 d𝑥 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem itgposval
StepHypRef Expression
1 iblrelem.1 . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
2 itgreval.2 . . 3 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
31, 2itgrevallem1 23967 . 2 (𝜑 → ∫𝐴𝐵 d𝑥 = ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) − (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0)))))
4 itgposval.3 . . . . . . . . 9 ((𝜑𝑥𝐴) → 0 ≤ 𝐵)
54ex 403 . . . . . . . 8 (𝜑 → (𝑥𝐴 → 0 ≤ 𝐵))
65pm4.71rd 558 . . . . . . 7 (𝜑 → (𝑥𝐴 ↔ (0 ≤ 𝐵𝑥𝐴)))
7 ancom 454 . . . . . . 7 ((0 ≤ 𝐵𝑥𝐴) ↔ (𝑥𝐴 ∧ 0 ≤ 𝐵))
86, 7syl6rbb 280 . . . . . 6 (𝜑 → ((𝑥𝐴 ∧ 0 ≤ 𝐵) ↔ 𝑥𝐴))
98ifbid 4330 . . . . 5 (𝜑 → if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0) = if(𝑥𝐴, 𝐵, 0))
109mpteq2dv 4970 . . . 4 (𝜑 → (𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)))
1110fveq2d 6441 . . 3 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))))
121, 4iblposlem 23964 . . 3 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0))) = 0)
1311, 12oveq12d 6928 . 2 (𝜑 → ((∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ 𝐵), 𝐵, 0))) − (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ -𝐵), -𝐵, 0)))) = ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) − 0))
141, 4iblpos 23965 . . . . . 6 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴𝐵) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ)))
152, 14mpbid 224 . . . . 5 (𝜑 → ((𝑥𝐴𝐵) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ))
1615simprd 491 . . . 4 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ)
1716recnd 10392 . . 3 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℂ)
1817subid1d 10709 . 2 (𝜑 → ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) − 0) = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))))
193, 13, 183eqtrd 2865 1 (𝜑 → ∫𝐴𝐵 d𝑥 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 386   = wceq 1656   ∈ wcel 2164  ifcif 4308   class class class wbr 4875   ↦ cmpt 4954  ‘cfv 6127  (class class class)co 6910  ℝcr 10258  0cc0 10259   ≤ cle 10399   − cmin 10592  -cneg 10593  MblFncmbf 23787  ∫2citg2 23789  𝐿1cibl 23790  ∫citg 23791 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-inf2 8822  ax-cnex 10315  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336  ax-pre-sup 10337  ax-addf 10338 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-fal 1670  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-int 4700  df-iun 4744  df-disj 4844  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-se 5306  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-isom 6136  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-of 7162  df-ofr 7163  df-om 7332  df-1st 7433  df-2nd 7434  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-1o 7831  df-2o 7832  df-oadd 7835  df-er 8014  df-map 8129  df-pm 8130  df-en 8229  df-dom 8230  df-sdom 8231  df-fin 8232  df-sup 8623  df-inf 8624  df-oi 8691  df-card 9085  df-cda 9312  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-div 11017  df-nn 11358  df-2 11421  df-3 11422  df-4 11423  df-n0 11626  df-z 11712  df-uz 11976  df-q 12079  df-rp 12120  df-xadd 12240  df-ioo 12474  df-ico 12476  df-icc 12477  df-fz 12627  df-fzo 12768  df-fl 12895  df-mod 12971  df-seq 13103  df-exp 13162  df-hash 13418  df-cj 14223  df-re 14224  df-im 14225  df-sqrt 14359  df-abs 14360  df-clim 14603  df-sum 14801  df-xmet 20106  df-met 20107  df-ovol 23637  df-vol 23638  df-mbf 23792  df-itg1 23793  df-itg2 23794  df-ibl 23795  df-itg 23796  df-0p 23843 This theorem is referenced by:  itgreval  23969  itgitg2  23979  itgaddlem1  23995  itgmulc2lem1  24004  itggt0  24014  itgcn  24015  itgaddnclem1  34006  itgmulc2nclem1  34014  itggt0cn  34020  ftc2nc  34032
 Copyright terms: Public domain W3C validator