| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > alephsdom | Structured version Visualization version GIF version | ||
| Description: If an ordinal is smaller than an initial ordinal, it is strictly dominated by it. (Contributed by Jeff Hankins, 24-Oct-2009.) (Proof shortened by Mario Carneiro, 20-Sep-2014.) |
| Ref | Expression |
|---|---|
| alephsdom | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∈ (ℵ‘𝐵) ↔ 𝐴 ≺ (ℵ‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐴 ∈ On) | |
| 2 | alephon 10109 | . . . 4 ⊢ (ℵ‘𝐵) ∈ On | |
| 3 | onenon 9989 | . . . 4 ⊢ ((ℵ‘𝐵) ∈ On → (ℵ‘𝐵) ∈ dom card) | |
| 4 | 2, 3 | ax-mp 5 | . . 3 ⊢ (ℵ‘𝐵) ∈ dom card |
| 5 | cardsdomel 10014 | . . 3 ⊢ ((𝐴 ∈ On ∧ (ℵ‘𝐵) ∈ dom card) → (𝐴 ≺ (ℵ‘𝐵) ↔ 𝐴 ∈ (card‘(ℵ‘𝐵)))) | |
| 6 | 1, 4, 5 | sylancl 586 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ≺ (ℵ‘𝐵) ↔ 𝐴 ∈ (card‘(ℵ‘𝐵)))) |
| 7 | alephcard 10110 | . . 3 ⊢ (card‘(ℵ‘𝐵)) = (ℵ‘𝐵) | |
| 8 | 7 | eleq2i 2833 | . 2 ⊢ (𝐴 ∈ (card‘(ℵ‘𝐵)) ↔ 𝐴 ∈ (ℵ‘𝐵)) |
| 9 | 6, 8 | bitr2di 288 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∈ (ℵ‘𝐵) ↔ 𝐴 ≺ (ℵ‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 class class class wbr 5143 dom cdm 5685 Oncon0 6384 ‘cfv 6561 ≺ csdm 8984 cardccrd 9975 ℵcale 9976 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-inf2 9681 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-se 5638 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-isom 6570 df-riota 7388 df-ov 7434 df-om 7888 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-oi 9550 df-har 9597 df-card 9979 df-aleph 9980 |
| This theorem is referenced by: alephdom2 10127 |
| Copyright terms: Public domain | W3C validator |