MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephsdom Structured version   Visualization version   GIF version

Theorem alephsdom 9511
Description: If an ordinal is smaller than an initial ordinal, it is strictly dominated by it. (Contributed by Jeff Hankins, 24-Oct-2009.) (Proof shortened by Mario Carneiro, 20-Sep-2014.)
Assertion
Ref Expression
alephsdom ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∈ (ℵ‘𝐵) ↔ 𝐴 ≺ (ℵ‘𝐵)))

Proof of Theorem alephsdom
StepHypRef Expression
1 simpl 485 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐴 ∈ On)
2 alephon 9494 . . . 4 (ℵ‘𝐵) ∈ On
3 onenon 9377 . . . 4 ((ℵ‘𝐵) ∈ On → (ℵ‘𝐵) ∈ dom card)
42, 3ax-mp 5 . . 3 (ℵ‘𝐵) ∈ dom card
5 cardsdomel 9402 . . 3 ((𝐴 ∈ On ∧ (ℵ‘𝐵) ∈ dom card) → (𝐴 ≺ (ℵ‘𝐵) ↔ 𝐴 ∈ (card‘(ℵ‘𝐵))))
61, 4, 5sylancl 588 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ≺ (ℵ‘𝐵) ↔ 𝐴 ∈ (card‘(ℵ‘𝐵))))
7 alephcard 9495 . . 3 (card‘(ℵ‘𝐵)) = (ℵ‘𝐵)
87eleq2i 2904 . 2 (𝐴 ∈ (card‘(ℵ‘𝐵)) ↔ 𝐴 ∈ (ℵ‘𝐵))
96, 8syl6rbb 290 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∈ (ℵ‘𝐵) ↔ 𝐴 ≺ (ℵ‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wcel 2110   class class class wbr 5065  dom cdm 5554  Oncon0 6190  cfv 6354  csdm 8507  cardccrd 9363  cale 9364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-inf2 9103
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7113  df-om 7580  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-er 8288  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-oi 8973  df-har 9021  df-card 9367  df-aleph 9368
This theorem is referenced by:  alephdom2  9512
  Copyright terms: Public domain W3C validator