MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephinit Structured version   Visualization version   GIF version

Theorem alephinit 9986
Description: An infinite initial ordinal is characterized by the property of being initial - that is, it is a subset of any dominating ordinal. (Contributed by Jeff Hankins, 29-Oct-2009.) (Proof shortened by Mario Carneiro, 20-Sep-2014.)
Assertion
Ref Expression
alephinit ((𝐴 ∈ On ∧ ω ⊆ 𝐴) → (𝐴 ∈ ran ℵ ↔ ∀𝑥 ∈ On (𝐴𝑥𝐴𝑥)))
Distinct variable group:   𝑥,𝐴

Proof of Theorem alephinit
StepHypRef Expression
1 isinfcard 9983 . . . . 5 ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) ↔ 𝐴 ∈ ran ℵ)
21bicomi 224 . . . 4 (𝐴 ∈ ran ℵ ↔ (ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴))
32baib 535 . . 3 (ω ⊆ 𝐴 → (𝐴 ∈ ran ℵ ↔ (card‘𝐴) = 𝐴))
43adantl 481 . 2 ((𝐴 ∈ On ∧ ω ⊆ 𝐴) → (𝐴 ∈ ran ℵ ↔ (card‘𝐴) = 𝐴))
5 onenon 9842 . . . . . . . 8 (𝐴 ∈ On → 𝐴 ∈ dom card)
65adantr 480 . . . . . . 7 ((𝐴 ∈ On ∧ ω ⊆ 𝐴) → 𝐴 ∈ dom card)
7 onenon 9842 . . . . . . 7 (𝑥 ∈ On → 𝑥 ∈ dom card)
8 carddom2 9870 . . . . . . 7 ((𝐴 ∈ dom card ∧ 𝑥 ∈ dom card) → ((card‘𝐴) ⊆ (card‘𝑥) ↔ 𝐴𝑥))
96, 7, 8syl2an 596 . . . . . 6 (((𝐴 ∈ On ∧ ω ⊆ 𝐴) ∧ 𝑥 ∈ On) → ((card‘𝐴) ⊆ (card‘𝑥) ↔ 𝐴𝑥))
10 cardonle 9850 . . . . . . . 8 (𝑥 ∈ On → (card‘𝑥) ⊆ 𝑥)
1110adantl 481 . . . . . . 7 (((𝐴 ∈ On ∧ ω ⊆ 𝐴) ∧ 𝑥 ∈ On) → (card‘𝑥) ⊆ 𝑥)
12 sstr 3938 . . . . . . . 8 (((card‘𝐴) ⊆ (card‘𝑥) ∧ (card‘𝑥) ⊆ 𝑥) → (card‘𝐴) ⊆ 𝑥)
1312expcom 413 . . . . . . 7 ((card‘𝑥) ⊆ 𝑥 → ((card‘𝐴) ⊆ (card‘𝑥) → (card‘𝐴) ⊆ 𝑥))
1411, 13syl 17 . . . . . 6 (((𝐴 ∈ On ∧ ω ⊆ 𝐴) ∧ 𝑥 ∈ On) → ((card‘𝐴) ⊆ (card‘𝑥) → (card‘𝐴) ⊆ 𝑥))
159, 14sylbird 260 . . . . 5 (((𝐴 ∈ On ∧ ω ⊆ 𝐴) ∧ 𝑥 ∈ On) → (𝐴𝑥 → (card‘𝐴) ⊆ 𝑥))
16 sseq1 3955 . . . . . 6 ((card‘𝐴) = 𝐴 → ((card‘𝐴) ⊆ 𝑥𝐴𝑥))
1716imbi2d 340 . . . . 5 ((card‘𝐴) = 𝐴 → ((𝐴𝑥 → (card‘𝐴) ⊆ 𝑥) ↔ (𝐴𝑥𝐴𝑥)))
1815, 17syl5ibcom 245 . . . 4 (((𝐴 ∈ On ∧ ω ⊆ 𝐴) ∧ 𝑥 ∈ On) → ((card‘𝐴) = 𝐴 → (𝐴𝑥𝐴𝑥)))
1918ralrimdva 3132 . . 3 ((𝐴 ∈ On ∧ ω ⊆ 𝐴) → ((card‘𝐴) = 𝐴 → ∀𝑥 ∈ On (𝐴𝑥𝐴𝑥)))
20 oncardid 9849 . . . . . . 7 (𝐴 ∈ On → (card‘𝐴) ≈ 𝐴)
21 ensym 8925 . . . . . . 7 ((card‘𝐴) ≈ 𝐴𝐴 ≈ (card‘𝐴))
22 endom 8901 . . . . . . 7 (𝐴 ≈ (card‘𝐴) → 𝐴 ≼ (card‘𝐴))
2320, 21, 223syl 18 . . . . . 6 (𝐴 ∈ On → 𝐴 ≼ (card‘𝐴))
2423adantr 480 . . . . 5 ((𝐴 ∈ On ∧ ω ⊆ 𝐴) → 𝐴 ≼ (card‘𝐴))
25 cardon 9837 . . . . . 6 (card‘𝐴) ∈ On
26 breq2 5093 . . . . . . . 8 (𝑥 = (card‘𝐴) → (𝐴𝑥𝐴 ≼ (card‘𝐴)))
27 sseq2 3956 . . . . . . . 8 (𝑥 = (card‘𝐴) → (𝐴𝑥𝐴 ⊆ (card‘𝐴)))
2826, 27imbi12d 344 . . . . . . 7 (𝑥 = (card‘𝐴) → ((𝐴𝑥𝐴𝑥) ↔ (𝐴 ≼ (card‘𝐴) → 𝐴 ⊆ (card‘𝐴))))
2928rspcv 3568 . . . . . 6 ((card‘𝐴) ∈ On → (∀𝑥 ∈ On (𝐴𝑥𝐴𝑥) → (𝐴 ≼ (card‘𝐴) → 𝐴 ⊆ (card‘𝐴))))
3025, 29ax-mp 5 . . . . 5 (∀𝑥 ∈ On (𝐴𝑥𝐴𝑥) → (𝐴 ≼ (card‘𝐴) → 𝐴 ⊆ (card‘𝐴)))
3124, 30syl5com 31 . . . 4 ((𝐴 ∈ On ∧ ω ⊆ 𝐴) → (∀𝑥 ∈ On (𝐴𝑥𝐴𝑥) → 𝐴 ⊆ (card‘𝐴)))
32 cardonle 9850 . . . . . . 7 (𝐴 ∈ On → (card‘𝐴) ⊆ 𝐴)
3332adantr 480 . . . . . 6 ((𝐴 ∈ On ∧ ω ⊆ 𝐴) → (card‘𝐴) ⊆ 𝐴)
3433biantrurd 532 . . . . 5 ((𝐴 ∈ On ∧ ω ⊆ 𝐴) → (𝐴 ⊆ (card‘𝐴) ↔ ((card‘𝐴) ⊆ 𝐴𝐴 ⊆ (card‘𝐴))))
35 eqss 3945 . . . . 5 ((card‘𝐴) = 𝐴 ↔ ((card‘𝐴) ⊆ 𝐴𝐴 ⊆ (card‘𝐴)))
3634, 35bitr4di 289 . . . 4 ((𝐴 ∈ On ∧ ω ⊆ 𝐴) → (𝐴 ⊆ (card‘𝐴) ↔ (card‘𝐴) = 𝐴))
3731, 36sylibd 239 . . 3 ((𝐴 ∈ On ∧ ω ⊆ 𝐴) → (∀𝑥 ∈ On (𝐴𝑥𝐴𝑥) → (card‘𝐴) = 𝐴))
3819, 37impbid 212 . 2 ((𝐴 ∈ On ∧ ω ⊆ 𝐴) → ((card‘𝐴) = 𝐴 ↔ ∀𝑥 ∈ On (𝐴𝑥𝐴𝑥)))
394, 38bitrd 279 1 ((𝐴 ∈ On ∧ ω ⊆ 𝐴) → (𝐴 ∈ ran ℵ ↔ ∀𝑥 ∈ On (𝐴𝑥𝐴𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  wss 3897   class class class wbr 5089  dom cdm 5614  ran crn 5615  Oncon0 6306  cfv 6481  ωcom 7796  cen 8866  cdom 8867  cardccrd 9828  cale 9829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-oi 9396  df-har 9443  df-card 9832  df-aleph 9833
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator