MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephinit Structured version   Visualization version   GIF version

Theorem alephinit 10133
Description: An infinite initial ordinal is characterized by the property of being initial - that is, it is a subset of any dominating ordinal. (Contributed by Jeff Hankins, 29-Oct-2009.) (Proof shortened by Mario Carneiro, 20-Sep-2014.)
Assertion
Ref Expression
alephinit ((𝐴 ∈ On ∧ ω ⊆ 𝐴) → (𝐴 ∈ ran ℵ ↔ ∀𝑥 ∈ On (𝐴𝑥𝐴𝑥)))
Distinct variable group:   𝑥,𝐴

Proof of Theorem alephinit
StepHypRef Expression
1 isinfcard 10130 . . . . 5 ((ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴) ↔ 𝐴 ∈ ran ℵ)
21bicomi 224 . . . 4 (𝐴 ∈ ran ℵ ↔ (ω ⊆ 𝐴 ∧ (card‘𝐴) = 𝐴))
32baib 535 . . 3 (ω ⊆ 𝐴 → (𝐴 ∈ ran ℵ ↔ (card‘𝐴) = 𝐴))
43adantl 481 . 2 ((𝐴 ∈ On ∧ ω ⊆ 𝐴) → (𝐴 ∈ ran ℵ ↔ (card‘𝐴) = 𝐴))
5 onenon 9987 . . . . . . . 8 (𝐴 ∈ On → 𝐴 ∈ dom card)
65adantr 480 . . . . . . 7 ((𝐴 ∈ On ∧ ω ⊆ 𝐴) → 𝐴 ∈ dom card)
7 onenon 9987 . . . . . . 7 (𝑥 ∈ On → 𝑥 ∈ dom card)
8 carddom2 10015 . . . . . . 7 ((𝐴 ∈ dom card ∧ 𝑥 ∈ dom card) → ((card‘𝐴) ⊆ (card‘𝑥) ↔ 𝐴𝑥))
96, 7, 8syl2an 596 . . . . . 6 (((𝐴 ∈ On ∧ ω ⊆ 𝐴) ∧ 𝑥 ∈ On) → ((card‘𝐴) ⊆ (card‘𝑥) ↔ 𝐴𝑥))
10 cardonle 9995 . . . . . . . 8 (𝑥 ∈ On → (card‘𝑥) ⊆ 𝑥)
1110adantl 481 . . . . . . 7 (((𝐴 ∈ On ∧ ω ⊆ 𝐴) ∧ 𝑥 ∈ On) → (card‘𝑥) ⊆ 𝑥)
12 sstr 4004 . . . . . . . 8 (((card‘𝐴) ⊆ (card‘𝑥) ∧ (card‘𝑥) ⊆ 𝑥) → (card‘𝐴) ⊆ 𝑥)
1312expcom 413 . . . . . . 7 ((card‘𝑥) ⊆ 𝑥 → ((card‘𝐴) ⊆ (card‘𝑥) → (card‘𝐴) ⊆ 𝑥))
1411, 13syl 17 . . . . . 6 (((𝐴 ∈ On ∧ ω ⊆ 𝐴) ∧ 𝑥 ∈ On) → ((card‘𝐴) ⊆ (card‘𝑥) → (card‘𝐴) ⊆ 𝑥))
159, 14sylbird 260 . . . . 5 (((𝐴 ∈ On ∧ ω ⊆ 𝐴) ∧ 𝑥 ∈ On) → (𝐴𝑥 → (card‘𝐴) ⊆ 𝑥))
16 sseq1 4021 . . . . . 6 ((card‘𝐴) = 𝐴 → ((card‘𝐴) ⊆ 𝑥𝐴𝑥))
1716imbi2d 340 . . . . 5 ((card‘𝐴) = 𝐴 → ((𝐴𝑥 → (card‘𝐴) ⊆ 𝑥) ↔ (𝐴𝑥𝐴𝑥)))
1815, 17syl5ibcom 245 . . . 4 (((𝐴 ∈ On ∧ ω ⊆ 𝐴) ∧ 𝑥 ∈ On) → ((card‘𝐴) = 𝐴 → (𝐴𝑥𝐴𝑥)))
1918ralrimdva 3152 . . 3 ((𝐴 ∈ On ∧ ω ⊆ 𝐴) → ((card‘𝐴) = 𝐴 → ∀𝑥 ∈ On (𝐴𝑥𝐴𝑥)))
20 oncardid 9994 . . . . . . 7 (𝐴 ∈ On → (card‘𝐴) ≈ 𝐴)
21 ensym 9042 . . . . . . 7 ((card‘𝐴) ≈ 𝐴𝐴 ≈ (card‘𝐴))
22 endom 9018 . . . . . . 7 (𝐴 ≈ (card‘𝐴) → 𝐴 ≼ (card‘𝐴))
2320, 21, 223syl 18 . . . . . 6 (𝐴 ∈ On → 𝐴 ≼ (card‘𝐴))
2423adantr 480 . . . . 5 ((𝐴 ∈ On ∧ ω ⊆ 𝐴) → 𝐴 ≼ (card‘𝐴))
25 cardon 9982 . . . . . 6 (card‘𝐴) ∈ On
26 breq2 5152 . . . . . . . 8 (𝑥 = (card‘𝐴) → (𝐴𝑥𝐴 ≼ (card‘𝐴)))
27 sseq2 4022 . . . . . . . 8 (𝑥 = (card‘𝐴) → (𝐴𝑥𝐴 ⊆ (card‘𝐴)))
2826, 27imbi12d 344 . . . . . . 7 (𝑥 = (card‘𝐴) → ((𝐴𝑥𝐴𝑥) ↔ (𝐴 ≼ (card‘𝐴) → 𝐴 ⊆ (card‘𝐴))))
2928rspcv 3618 . . . . . 6 ((card‘𝐴) ∈ On → (∀𝑥 ∈ On (𝐴𝑥𝐴𝑥) → (𝐴 ≼ (card‘𝐴) → 𝐴 ⊆ (card‘𝐴))))
3025, 29ax-mp 5 . . . . 5 (∀𝑥 ∈ On (𝐴𝑥𝐴𝑥) → (𝐴 ≼ (card‘𝐴) → 𝐴 ⊆ (card‘𝐴)))
3124, 30syl5com 31 . . . 4 ((𝐴 ∈ On ∧ ω ⊆ 𝐴) → (∀𝑥 ∈ On (𝐴𝑥𝐴𝑥) → 𝐴 ⊆ (card‘𝐴)))
32 cardonle 9995 . . . . . . 7 (𝐴 ∈ On → (card‘𝐴) ⊆ 𝐴)
3332adantr 480 . . . . . 6 ((𝐴 ∈ On ∧ ω ⊆ 𝐴) → (card‘𝐴) ⊆ 𝐴)
3433biantrurd 532 . . . . 5 ((𝐴 ∈ On ∧ ω ⊆ 𝐴) → (𝐴 ⊆ (card‘𝐴) ↔ ((card‘𝐴) ⊆ 𝐴𝐴 ⊆ (card‘𝐴))))
35 eqss 4011 . . . . 5 ((card‘𝐴) = 𝐴 ↔ ((card‘𝐴) ⊆ 𝐴𝐴 ⊆ (card‘𝐴)))
3634, 35bitr4di 289 . . . 4 ((𝐴 ∈ On ∧ ω ⊆ 𝐴) → (𝐴 ⊆ (card‘𝐴) ↔ (card‘𝐴) = 𝐴))
3731, 36sylibd 239 . . 3 ((𝐴 ∈ On ∧ ω ⊆ 𝐴) → (∀𝑥 ∈ On (𝐴𝑥𝐴𝑥) → (card‘𝐴) = 𝐴))
3819, 37impbid 212 . 2 ((𝐴 ∈ On ∧ ω ⊆ 𝐴) → ((card‘𝐴) = 𝐴 ↔ ∀𝑥 ∈ On (𝐴𝑥𝐴𝑥)))
394, 38bitrd 279 1 ((𝐴 ∈ On ∧ ω ⊆ 𝐴) → (𝐴 ∈ ran ℵ ↔ ∀𝑥 ∈ On (𝐴𝑥𝐴𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wral 3059  wss 3963   class class class wbr 5148  dom cdm 5689  ran crn 5690  Oncon0 6386  cfv 6563  ωcom 7887  cen 8981  cdom 8982  cardccrd 9973  cale 9974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-oi 9548  df-har 9595  df-card 9977  df-aleph 9978
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator