MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardsn Structured version   Visualization version   GIF version

Theorem cardsn 10009
Description: A singleton has cardinality one. (Contributed by Mario Carneiro, 10-Jan-2013.)
Assertion
Ref Expression
cardsn (𝐴𝑉 → (card‘{𝐴}) = 1o)

Proof of Theorem cardsn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2737 . . 3 {𝐴} = {𝐴}
2 sneq 4636 . . . . 5 (𝑥 = 𝐴 → {𝑥} = {𝐴})
32eqeq2d 2748 . . . 4 (𝑥 = 𝐴 → ({𝐴} = {𝑥} ↔ {𝐴} = {𝐴}))
43spcegv 3597 . . 3 (𝐴𝑉 → ({𝐴} = {𝐴} → ∃𝑥{𝐴} = {𝑥}))
51, 4mpi 20 . 2 (𝐴𝑉 → ∃𝑥{𝐴} = {𝑥})
6 card1 10008 . 2 ((card‘{𝐴}) = 1o ↔ ∃𝑥{𝐴} = {𝑥})
75, 6sylibr 234 1 (𝐴𝑉 → (card‘{𝐴}) = 1o)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wex 1779  wcel 2108  {csn 4626  cfv 6561  1oc1o 8499  cardccrd 9975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-om 7888  df-1o 8506  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-card 9979
This theorem is referenced by:  ackbij1lem14  10272  cfsuc  10297
  Copyright terms: Public domain W3C validator