![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cardsn | Structured version Visualization version GIF version |
Description: A singleton has cardinality one. (Contributed by Mario Carneiro, 10-Jan-2013.) |
Ref | Expression |
---|---|
cardsn | ⊢ (𝐴 ∈ 𝑉 → (card‘{𝐴}) = 1o) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . 3 ⊢ {𝐴} = {𝐴} | |
2 | sneq 4658 | . . . . 5 ⊢ (𝑥 = 𝐴 → {𝑥} = {𝐴}) | |
3 | 2 | eqeq2d 2751 | . . . 4 ⊢ (𝑥 = 𝐴 → ({𝐴} = {𝑥} ↔ {𝐴} = {𝐴})) |
4 | 3 | spcegv 3610 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ({𝐴} = {𝐴} → ∃𝑥{𝐴} = {𝑥})) |
5 | 1, 4 | mpi 20 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥{𝐴} = {𝑥}) |
6 | card1 10037 | . 2 ⊢ ((card‘{𝐴}) = 1o ↔ ∃𝑥{𝐴} = {𝑥}) | |
7 | 5, 6 | sylibr 234 | 1 ⊢ (𝐴 ∈ 𝑉 → (card‘{𝐴}) = 1o) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∃wex 1777 ∈ wcel 2108 {csn 4648 ‘cfv 6573 1oc1o 8515 cardccrd 10004 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-om 7904 df-1o 8522 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-card 10008 |
This theorem is referenced by: ackbij1lem14 10301 cfsuc 10326 |
Copyright terms: Public domain | W3C validator |