Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme9tN Structured version   Visualization version   GIF version

Theorem cdleme9tN 38766
Description: Part of proof of Lemma E in [Crawley] p. 113, 2nd paragraph on p. 114. 𝑋 and 𝐹 represent t1 and f(t) respectively. In their notation, we prove f(t) ∨ t1 = q ∨ t1. (Contributed by NM, 8-Oct-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdleme9t.l ≀ = (leβ€˜πΎ)
cdleme9t.j ∨ = (joinβ€˜πΎ)
cdleme9t.m ∧ = (meetβ€˜πΎ)
cdleme9t.a 𝐴 = (Atomsβ€˜πΎ)
cdleme9t.h 𝐻 = (LHypβ€˜πΎ)
cdleme9t.u π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)
cdleme9t.g 𝐹 = ((𝑇 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑇) ∧ π‘Š)))
cdleme9t.x 𝑋 = ((𝑃 ∨ 𝑇) ∧ π‘Š)
Assertion
Ref Expression
cdleme9tN (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴 ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š)) ∧ Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄)) β†’ (𝐹 ∨ 𝑋) = (𝑄 ∨ 𝑋))

Proof of Theorem cdleme9tN
StepHypRef Expression
1 cdleme9t.l . 2 ≀ = (leβ€˜πΎ)
2 cdleme9t.j . 2 ∨ = (joinβ€˜πΎ)
3 cdleme9t.m . 2 ∧ = (meetβ€˜πΎ)
4 cdleme9t.a . 2 𝐴 = (Atomsβ€˜πΎ)
5 cdleme9t.h . 2 𝐻 = (LHypβ€˜πΎ)
6 cdleme9t.u . 2 π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)
7 cdleme9t.g . 2 𝐹 = ((𝑇 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑇) ∧ π‘Š)))
8 cdleme9t.x . 2 𝑋 = ((𝑃 ∨ 𝑇) ∧ π‘Š)
91, 2, 3, 4, 5, 6, 7, 8cdleme9 38762 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴 ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š)) ∧ Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄)) β†’ (𝐹 ∨ 𝑋) = (𝑄 ∨ 𝑋))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107   class class class wbr 5106  β€˜cfv 6497  (class class class)co 7358  lecple 17145  joincjn 18205  meetcmee 18206  Atomscatm 37771  HLchlt 37858  LHypclh 38493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-iin 4958  df-br 5107  df-opab 5169  df-mpt 5190  df-id 5532  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-1st 7922  df-2nd 7923  df-proset 18189  df-poset 18207  df-plt 18224  df-lub 18240  df-glb 18241  df-join 18242  df-meet 18243  df-p0 18319  df-p1 18320  df-lat 18326  df-clat 18393  df-oposet 37684  df-ol 37686  df-oml 37687  df-covers 37774  df-ats 37775  df-atl 37806  df-cvlat 37830  df-hlat 37859  df-psubsp 38012  df-pmap 38013  df-padd 38305  df-lhyp 38497
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator