![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > climfveq | Structured version Visualization version GIF version |
Description: Two functions that are eventually equal to one another have the same limit. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
climfveq.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climfveq.2 | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
climfveq.3 | ⊢ (𝜑 → 𝐺 ∈ 𝑊) |
climfveq.4 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
climfveq.5 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (𝐺‘𝑘)) |
Ref | Expression |
---|---|
climfveq | ⊢ (𝜑 → ( ⇝ ‘𝐹) = ( ⇝ ‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climdm 15494 | . . . . 5 ⊢ (𝐹 ∈ dom ⇝ ↔ 𝐹 ⇝ ( ⇝ ‘𝐹)) | |
2 | 1 | biimpi 215 | . . . 4 ⊢ (𝐹 ∈ dom ⇝ → 𝐹 ⇝ ( ⇝ ‘𝐹)) |
3 | 2 | adantl 482 | . . 3 ⊢ ((𝜑 ∧ 𝐹 ∈ dom ⇝ ) → 𝐹 ⇝ ( ⇝ ‘𝐹)) |
4 | 3, 1 | sylibr 233 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐹 ∈ dom ⇝ ) → 𝐹 ∈ dom ⇝ ) |
5 | climfveq.1 | . . . . . . . 8 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
6 | climfveq.2 | . . . . . . . 8 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
7 | climfveq.3 | . . . . . . . 8 ⊢ (𝜑 → 𝐺 ∈ 𝑊) | |
8 | climfveq.4 | . . . . . . . 8 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
9 | climfveq.5 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (𝐺‘𝑘)) | |
10 | 5, 6, 7, 8, 9 | climeldmeq 44367 | . . . . . . 7 ⊢ (𝜑 → (𝐹 ∈ dom ⇝ ↔ 𝐺 ∈ dom ⇝ )) |
11 | 10 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐹 ∈ dom ⇝ ) → (𝐹 ∈ dom ⇝ ↔ 𝐺 ∈ dom ⇝ )) |
12 | 4, 11 | mpbid 231 | . . . . 5 ⊢ ((𝜑 ∧ 𝐹 ∈ dom ⇝ ) → 𝐺 ∈ dom ⇝ ) |
13 | climdm 15494 | . . . . 5 ⊢ (𝐺 ∈ dom ⇝ ↔ 𝐺 ⇝ ( ⇝ ‘𝐺)) | |
14 | 12, 13 | sylib 217 | . . . 4 ⊢ ((𝜑 ∧ 𝐹 ∈ dom ⇝ ) → 𝐺 ⇝ ( ⇝ ‘𝐺)) |
15 | 7 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝐹 ∈ dom ⇝ ) → 𝐺 ∈ 𝑊) |
16 | 6 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝐹 ∈ dom ⇝ ) → 𝐹 ∈ 𝑉) |
17 | 8 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝐹 ∈ dom ⇝ ) → 𝑀 ∈ ℤ) |
18 | 9 | eqcomd 2738 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (𝐹‘𝑘)) |
19 | 18 | adantlr 713 | . . . . 5 ⊢ (((𝜑 ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (𝐹‘𝑘)) |
20 | 5, 15, 16, 17, 19 | climeq 15507 | . . . 4 ⊢ ((𝜑 ∧ 𝐹 ∈ dom ⇝ ) → (𝐺 ⇝ ( ⇝ ‘𝐺) ↔ 𝐹 ⇝ ( ⇝ ‘𝐺))) |
21 | 14, 20 | mpbid 231 | . . 3 ⊢ ((𝜑 ∧ 𝐹 ∈ dom ⇝ ) → 𝐹 ⇝ ( ⇝ ‘𝐺)) |
22 | climuni 15492 | . . 3 ⊢ ((𝐹 ⇝ ( ⇝ ‘𝐹) ∧ 𝐹 ⇝ ( ⇝ ‘𝐺)) → ( ⇝ ‘𝐹) = ( ⇝ ‘𝐺)) | |
23 | 3, 21, 22 | syl2anc 584 | . 2 ⊢ ((𝜑 ∧ 𝐹 ∈ dom ⇝ ) → ( ⇝ ‘𝐹) = ( ⇝ ‘𝐺)) |
24 | ndmfv 6923 | . . . 4 ⊢ (¬ 𝐹 ∈ dom ⇝ → ( ⇝ ‘𝐹) = ∅) | |
25 | 24 | adantl 482 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐹 ∈ dom ⇝ ) → ( ⇝ ‘𝐹) = ∅) |
26 | simpr 485 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝐹 ∈ dom ⇝ ) → ¬ 𝐹 ∈ dom ⇝ ) | |
27 | 10 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝐹 ∈ dom ⇝ ) → (𝐹 ∈ dom ⇝ ↔ 𝐺 ∈ dom ⇝ )) |
28 | 26, 27 | mtbid 323 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐹 ∈ dom ⇝ ) → ¬ 𝐺 ∈ dom ⇝ ) |
29 | ndmfv 6923 | . . . 4 ⊢ (¬ 𝐺 ∈ dom ⇝ → ( ⇝ ‘𝐺) = ∅) | |
30 | 28, 29 | syl 17 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐹 ∈ dom ⇝ ) → ( ⇝ ‘𝐺) = ∅) |
31 | 25, 30 | eqtr4d 2775 | . 2 ⊢ ((𝜑 ∧ ¬ 𝐹 ∈ dom ⇝ ) → ( ⇝ ‘𝐹) = ( ⇝ ‘𝐺)) |
32 | 23, 31 | pm2.61dan 811 | 1 ⊢ (𝜑 → ( ⇝ ‘𝐹) = ( ⇝ ‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∅c0 4321 class class class wbr 5147 dom cdm 5675 ‘cfv 6540 ℤcz 12554 ℤ≥cuz 12818 ⇝ cli 15424 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-sup 9433 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-n0 12469 df-z 12555 df-uz 12819 df-rp 12971 df-seq 13963 df-exp 14024 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-clim 15428 |
This theorem is referenced by: climfveqmpt 44373 climfveqmpt3 44384 |
Copyright terms: Public domain | W3C validator |