Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climfveq Structured version   Visualization version   GIF version

Theorem climfveq 45104
Description: Two functions that are eventually equal to one another have the same limit. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
climfveq.1 𝑍 = (ℤ𝑀)
climfveq.2 (𝜑𝐹𝑉)
climfveq.3 (𝜑𝐺𝑊)
climfveq.4 (𝜑𝑀 ∈ ℤ)
climfveq.5 ((𝜑𝑘𝑍) → (𝐹𝑘) = (𝐺𝑘))
Assertion
Ref Expression
climfveq (𝜑 → ( ⇝ ‘𝐹) = ( ⇝ ‘𝐺))
Distinct variable groups:   𝑘,𝐹   𝑘,𝐺   𝑘,𝑍   𝜑,𝑘
Allowed substitution hints:   𝑀(𝑘)   𝑉(𝑘)   𝑊(𝑘)

Proof of Theorem climfveq
StepHypRef Expression
1 climdm 15540 . . . . 5 (𝐹 ∈ dom ⇝ ↔ 𝐹 ⇝ ( ⇝ ‘𝐹))
21biimpi 215 . . . 4 (𝐹 ∈ dom ⇝ → 𝐹 ⇝ ( ⇝ ‘𝐹))
32adantl 480 . . 3 ((𝜑𝐹 ∈ dom ⇝ ) → 𝐹 ⇝ ( ⇝ ‘𝐹))
43, 1sylibr 233 . . . . . 6 ((𝜑𝐹 ∈ dom ⇝ ) → 𝐹 ∈ dom ⇝ )
5 climfveq.1 . . . . . . . 8 𝑍 = (ℤ𝑀)
6 climfveq.2 . . . . . . . 8 (𝜑𝐹𝑉)
7 climfveq.3 . . . . . . . 8 (𝜑𝐺𝑊)
8 climfveq.4 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
9 climfveq.5 . . . . . . . 8 ((𝜑𝑘𝑍) → (𝐹𝑘) = (𝐺𝑘))
105, 6, 7, 8, 9climeldmeq 45100 . . . . . . 7 (𝜑 → (𝐹 ∈ dom ⇝ ↔ 𝐺 ∈ dom ⇝ ))
1110adantr 479 . . . . . 6 ((𝜑𝐹 ∈ dom ⇝ ) → (𝐹 ∈ dom ⇝ ↔ 𝐺 ∈ dom ⇝ ))
124, 11mpbid 231 . . . . 5 ((𝜑𝐹 ∈ dom ⇝ ) → 𝐺 ∈ dom ⇝ )
13 climdm 15540 . . . . 5 (𝐺 ∈ dom ⇝ ↔ 𝐺 ⇝ ( ⇝ ‘𝐺))
1412, 13sylib 217 . . . 4 ((𝜑𝐹 ∈ dom ⇝ ) → 𝐺 ⇝ ( ⇝ ‘𝐺))
157adantr 479 . . . . 5 ((𝜑𝐹 ∈ dom ⇝ ) → 𝐺𝑊)
166adantr 479 . . . . 5 ((𝜑𝐹 ∈ dom ⇝ ) → 𝐹𝑉)
178adantr 479 . . . . 5 ((𝜑𝐹 ∈ dom ⇝ ) → 𝑀 ∈ ℤ)
189eqcomd 2734 . . . . . 6 ((𝜑𝑘𝑍) → (𝐺𝑘) = (𝐹𝑘))
1918adantlr 713 . . . . 5 (((𝜑𝐹 ∈ dom ⇝ ) ∧ 𝑘𝑍) → (𝐺𝑘) = (𝐹𝑘))
205, 15, 16, 17, 19climeq 15553 . . . 4 ((𝜑𝐹 ∈ dom ⇝ ) → (𝐺 ⇝ ( ⇝ ‘𝐺) ↔ 𝐹 ⇝ ( ⇝ ‘𝐺)))
2114, 20mpbid 231 . . 3 ((𝜑𝐹 ∈ dom ⇝ ) → 𝐹 ⇝ ( ⇝ ‘𝐺))
22 climuni 15538 . . 3 ((𝐹 ⇝ ( ⇝ ‘𝐹) ∧ 𝐹 ⇝ ( ⇝ ‘𝐺)) → ( ⇝ ‘𝐹) = ( ⇝ ‘𝐺))
233, 21, 22syl2anc 582 . 2 ((𝜑𝐹 ∈ dom ⇝ ) → ( ⇝ ‘𝐹) = ( ⇝ ‘𝐺))
24 ndmfv 6937 . . . 4 𝐹 ∈ dom ⇝ → ( ⇝ ‘𝐹) = ∅)
2524adantl 480 . . 3 ((𝜑 ∧ ¬ 𝐹 ∈ dom ⇝ ) → ( ⇝ ‘𝐹) = ∅)
26 simpr 483 . . . . 5 ((𝜑 ∧ ¬ 𝐹 ∈ dom ⇝ ) → ¬ 𝐹 ∈ dom ⇝ )
2710adantr 479 . . . . 5 ((𝜑 ∧ ¬ 𝐹 ∈ dom ⇝ ) → (𝐹 ∈ dom ⇝ ↔ 𝐺 ∈ dom ⇝ ))
2826, 27mtbid 323 . . . 4 ((𝜑 ∧ ¬ 𝐹 ∈ dom ⇝ ) → ¬ 𝐺 ∈ dom ⇝ )
29 ndmfv 6937 . . . 4 𝐺 ∈ dom ⇝ → ( ⇝ ‘𝐺) = ∅)
3028, 29syl 17 . . 3 ((𝜑 ∧ ¬ 𝐹 ∈ dom ⇝ ) → ( ⇝ ‘𝐺) = ∅)
3125, 30eqtr4d 2771 . 2 ((𝜑 ∧ ¬ 𝐹 ∈ dom ⇝ ) → ( ⇝ ‘𝐹) = ( ⇝ ‘𝐺))
3223, 31pm2.61dan 811 1 (𝜑 → ( ⇝ ‘𝐹) = ( ⇝ ‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  c0 4326   class class class wbr 5152  dom cdm 5682  cfv 6553  cz 12598  cuz 12862  cli 15470
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7748  ax-cnex 11204  ax-resscn 11205  ax-1cn 11206  ax-icn 11207  ax-addcl 11208  ax-addrcl 11209  ax-mulcl 11210  ax-mulrcl 11211  ax-mulcom 11212  ax-addass 11213  ax-mulass 11214  ax-distr 11215  ax-i2m1 11216  ax-1ne0 11217  ax-1rid 11218  ax-rnegex 11219  ax-rrecex 11220  ax-cnre 11221  ax-pre-lttri 11222  ax-pre-lttrn 11223  ax-pre-ltadd 11224  ax-pre-mulgt0 11225  ax-pre-sup 11226
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7879  df-2nd 8002  df-frecs 8295  df-wrecs 8326  df-recs 8400  df-rdg 8439  df-er 8733  df-en 8973  df-dom 8974  df-sdom 8975  df-sup 9475  df-pnf 11290  df-mnf 11291  df-xr 11292  df-ltxr 11293  df-le 11294  df-sub 11486  df-neg 11487  df-div 11912  df-nn 12253  df-2 12315  df-3 12316  df-n0 12513  df-z 12599  df-uz 12863  df-rp 13017  df-seq 14009  df-exp 14069  df-cj 15088  df-re 15089  df-im 15090  df-sqrt 15224  df-abs 15225  df-clim 15474
This theorem is referenced by:  climfveqmpt  45106  climfveqmpt3  45117
  Copyright terms: Public domain W3C validator