![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > climfveq | Structured version Visualization version GIF version |
Description: Two functions that are eventually equal to one another have the same limit. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
climfveq.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climfveq.2 | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
climfveq.3 | ⊢ (𝜑 → 𝐺 ∈ 𝑊) |
climfveq.4 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
climfveq.5 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (𝐺‘𝑘)) |
Ref | Expression |
---|---|
climfveq | ⊢ (𝜑 → ( ⇝ ‘𝐹) = ( ⇝ ‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climdm 15551 | . . . . 5 ⊢ (𝐹 ∈ dom ⇝ ↔ 𝐹 ⇝ ( ⇝ ‘𝐹)) | |
2 | 1 | biimpi 215 | . . . 4 ⊢ (𝐹 ∈ dom ⇝ → 𝐹 ⇝ ( ⇝ ‘𝐹)) |
3 | 2 | adantl 480 | . . 3 ⊢ ((𝜑 ∧ 𝐹 ∈ dom ⇝ ) → 𝐹 ⇝ ( ⇝ ‘𝐹)) |
4 | 3, 1 | sylibr 233 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐹 ∈ dom ⇝ ) → 𝐹 ∈ dom ⇝ ) |
5 | climfveq.1 | . . . . . . . 8 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
6 | climfveq.2 | . . . . . . . 8 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
7 | climfveq.3 | . . . . . . . 8 ⊢ (𝜑 → 𝐺 ∈ 𝑊) | |
8 | climfveq.4 | . . . . . . . 8 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
9 | climfveq.5 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (𝐺‘𝑘)) | |
10 | 5, 6, 7, 8, 9 | climeldmeq 45322 | . . . . . . 7 ⊢ (𝜑 → (𝐹 ∈ dom ⇝ ↔ 𝐺 ∈ dom ⇝ )) |
11 | 10 | adantr 479 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐹 ∈ dom ⇝ ) → (𝐹 ∈ dom ⇝ ↔ 𝐺 ∈ dom ⇝ )) |
12 | 4, 11 | mpbid 231 | . . . . 5 ⊢ ((𝜑 ∧ 𝐹 ∈ dom ⇝ ) → 𝐺 ∈ dom ⇝ ) |
13 | climdm 15551 | . . . . 5 ⊢ (𝐺 ∈ dom ⇝ ↔ 𝐺 ⇝ ( ⇝ ‘𝐺)) | |
14 | 12, 13 | sylib 217 | . . . 4 ⊢ ((𝜑 ∧ 𝐹 ∈ dom ⇝ ) → 𝐺 ⇝ ( ⇝ ‘𝐺)) |
15 | 7 | adantr 479 | . . . . 5 ⊢ ((𝜑 ∧ 𝐹 ∈ dom ⇝ ) → 𝐺 ∈ 𝑊) |
16 | 6 | adantr 479 | . . . . 5 ⊢ ((𝜑 ∧ 𝐹 ∈ dom ⇝ ) → 𝐹 ∈ 𝑉) |
17 | 8 | adantr 479 | . . . . 5 ⊢ ((𝜑 ∧ 𝐹 ∈ dom ⇝ ) → 𝑀 ∈ ℤ) |
18 | 9 | eqcomd 2732 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (𝐹‘𝑘)) |
19 | 18 | adantlr 713 | . . . . 5 ⊢ (((𝜑 ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (𝐹‘𝑘)) |
20 | 5, 15, 16, 17, 19 | climeq 15564 | . . . 4 ⊢ ((𝜑 ∧ 𝐹 ∈ dom ⇝ ) → (𝐺 ⇝ ( ⇝ ‘𝐺) ↔ 𝐹 ⇝ ( ⇝ ‘𝐺))) |
21 | 14, 20 | mpbid 231 | . . 3 ⊢ ((𝜑 ∧ 𝐹 ∈ dom ⇝ ) → 𝐹 ⇝ ( ⇝ ‘𝐺)) |
22 | climuni 15549 | . . 3 ⊢ ((𝐹 ⇝ ( ⇝ ‘𝐹) ∧ 𝐹 ⇝ ( ⇝ ‘𝐺)) → ( ⇝ ‘𝐹) = ( ⇝ ‘𝐺)) | |
23 | 3, 21, 22 | syl2anc 582 | . 2 ⊢ ((𝜑 ∧ 𝐹 ∈ dom ⇝ ) → ( ⇝ ‘𝐹) = ( ⇝ ‘𝐺)) |
24 | ndmfv 6928 | . . . 4 ⊢ (¬ 𝐹 ∈ dom ⇝ → ( ⇝ ‘𝐹) = ∅) | |
25 | 24 | adantl 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐹 ∈ dom ⇝ ) → ( ⇝ ‘𝐹) = ∅) |
26 | simpr 483 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝐹 ∈ dom ⇝ ) → ¬ 𝐹 ∈ dom ⇝ ) | |
27 | 10 | adantr 479 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝐹 ∈ dom ⇝ ) → (𝐹 ∈ dom ⇝ ↔ 𝐺 ∈ dom ⇝ )) |
28 | 26, 27 | mtbid 323 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐹 ∈ dom ⇝ ) → ¬ 𝐺 ∈ dom ⇝ ) |
29 | ndmfv 6928 | . . . 4 ⊢ (¬ 𝐺 ∈ dom ⇝ → ( ⇝ ‘𝐺) = ∅) | |
30 | 28, 29 | syl 17 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐹 ∈ dom ⇝ ) → ( ⇝ ‘𝐺) = ∅) |
31 | 25, 30 | eqtr4d 2769 | . 2 ⊢ ((𝜑 ∧ ¬ 𝐹 ∈ dom ⇝ ) → ( ⇝ ‘𝐹) = ( ⇝ ‘𝐺)) |
32 | 23, 31 | pm2.61dan 811 | 1 ⊢ (𝜑 → ( ⇝ ‘𝐹) = ( ⇝ ‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ∅c0 4322 class class class wbr 5145 dom cdm 5674 ‘cfv 6546 ℤcz 12604 ℤ≥cuz 12868 ⇝ cli 15481 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7738 ax-cnex 11205 ax-resscn 11206 ax-1cn 11207 ax-icn 11208 ax-addcl 11209 ax-addrcl 11210 ax-mulcl 11211 ax-mulrcl 11212 ax-mulcom 11213 ax-addass 11214 ax-mulass 11215 ax-distr 11216 ax-i2m1 11217 ax-1ne0 11218 ax-1rid 11219 ax-rnegex 11220 ax-rrecex 11221 ax-cnre 11222 ax-pre-lttri 11223 ax-pre-lttrn 11224 ax-pre-ltadd 11225 ax-pre-mulgt0 11226 ax-pre-sup 11227 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-iun 4995 df-br 5146 df-opab 5208 df-mpt 5229 df-tr 5263 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-pred 6304 df-ord 6371 df-on 6372 df-lim 6373 df-suc 6374 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-f1 6551 df-fo 6552 df-f1o 6553 df-fv 6554 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-om 7869 df-2nd 7996 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-er 8726 df-en 8967 df-dom 8968 df-sdom 8969 df-sup 9478 df-pnf 11291 df-mnf 11292 df-xr 11293 df-ltxr 11294 df-le 11295 df-sub 11487 df-neg 11488 df-div 11913 df-nn 12259 df-2 12321 df-3 12322 df-n0 12519 df-z 12605 df-uz 12869 df-rp 13023 df-seq 14016 df-exp 14076 df-cj 15099 df-re 15100 df-im 15101 df-sqrt 15235 df-abs 15236 df-clim 15485 |
This theorem is referenced by: climfveqmpt 45328 climfveqmpt3 45339 |
Copyright terms: Public domain | W3C validator |