Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climfveq Structured version   Visualization version   GIF version

Theorem climfveq 45625
Description: Two functions that are eventually equal to one another have the same limit. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
climfveq.1 𝑍 = (ℤ𝑀)
climfveq.2 (𝜑𝐹𝑉)
climfveq.3 (𝜑𝐺𝑊)
climfveq.4 (𝜑𝑀 ∈ ℤ)
climfveq.5 ((𝜑𝑘𝑍) → (𝐹𝑘) = (𝐺𝑘))
Assertion
Ref Expression
climfveq (𝜑 → ( ⇝ ‘𝐹) = ( ⇝ ‘𝐺))
Distinct variable groups:   𝑘,𝐹   𝑘,𝐺   𝑘,𝑍   𝜑,𝑘
Allowed substitution hints:   𝑀(𝑘)   𝑉(𝑘)   𝑊(𝑘)

Proof of Theorem climfveq
StepHypRef Expression
1 climdm 15587 . . . . 5 (𝐹 ∈ dom ⇝ ↔ 𝐹 ⇝ ( ⇝ ‘𝐹))
21biimpi 216 . . . 4 (𝐹 ∈ dom ⇝ → 𝐹 ⇝ ( ⇝ ‘𝐹))
32adantl 481 . . 3 ((𝜑𝐹 ∈ dom ⇝ ) → 𝐹 ⇝ ( ⇝ ‘𝐹))
43, 1sylibr 234 . . . . . 6 ((𝜑𝐹 ∈ dom ⇝ ) → 𝐹 ∈ dom ⇝ )
5 climfveq.1 . . . . . . . 8 𝑍 = (ℤ𝑀)
6 climfveq.2 . . . . . . . 8 (𝜑𝐹𝑉)
7 climfveq.3 . . . . . . . 8 (𝜑𝐺𝑊)
8 climfveq.4 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
9 climfveq.5 . . . . . . . 8 ((𝜑𝑘𝑍) → (𝐹𝑘) = (𝐺𝑘))
105, 6, 7, 8, 9climeldmeq 45621 . . . . . . 7 (𝜑 → (𝐹 ∈ dom ⇝ ↔ 𝐺 ∈ dom ⇝ ))
1110adantr 480 . . . . . 6 ((𝜑𝐹 ∈ dom ⇝ ) → (𝐹 ∈ dom ⇝ ↔ 𝐺 ∈ dom ⇝ ))
124, 11mpbid 232 . . . . 5 ((𝜑𝐹 ∈ dom ⇝ ) → 𝐺 ∈ dom ⇝ )
13 climdm 15587 . . . . 5 (𝐺 ∈ dom ⇝ ↔ 𝐺 ⇝ ( ⇝ ‘𝐺))
1412, 13sylib 218 . . . 4 ((𝜑𝐹 ∈ dom ⇝ ) → 𝐺 ⇝ ( ⇝ ‘𝐺))
157adantr 480 . . . . 5 ((𝜑𝐹 ∈ dom ⇝ ) → 𝐺𝑊)
166adantr 480 . . . . 5 ((𝜑𝐹 ∈ dom ⇝ ) → 𝐹𝑉)
178adantr 480 . . . . 5 ((𝜑𝐹 ∈ dom ⇝ ) → 𝑀 ∈ ℤ)
189eqcomd 2741 . . . . . 6 ((𝜑𝑘𝑍) → (𝐺𝑘) = (𝐹𝑘))
1918adantlr 715 . . . . 5 (((𝜑𝐹 ∈ dom ⇝ ) ∧ 𝑘𝑍) → (𝐺𝑘) = (𝐹𝑘))
205, 15, 16, 17, 19climeq 15600 . . . 4 ((𝜑𝐹 ∈ dom ⇝ ) → (𝐺 ⇝ ( ⇝ ‘𝐺) ↔ 𝐹 ⇝ ( ⇝ ‘𝐺)))
2114, 20mpbid 232 . . 3 ((𝜑𝐹 ∈ dom ⇝ ) → 𝐹 ⇝ ( ⇝ ‘𝐺))
22 climuni 15585 . . 3 ((𝐹 ⇝ ( ⇝ ‘𝐹) ∧ 𝐹 ⇝ ( ⇝ ‘𝐺)) → ( ⇝ ‘𝐹) = ( ⇝ ‘𝐺))
233, 21, 22syl2anc 584 . 2 ((𝜑𝐹 ∈ dom ⇝ ) → ( ⇝ ‘𝐹) = ( ⇝ ‘𝐺))
24 ndmfv 6942 . . . 4 𝐹 ∈ dom ⇝ → ( ⇝ ‘𝐹) = ∅)
2524adantl 481 . . 3 ((𝜑 ∧ ¬ 𝐹 ∈ dom ⇝ ) → ( ⇝ ‘𝐹) = ∅)
26 simpr 484 . . . . 5 ((𝜑 ∧ ¬ 𝐹 ∈ dom ⇝ ) → ¬ 𝐹 ∈ dom ⇝ )
2710adantr 480 . . . . 5 ((𝜑 ∧ ¬ 𝐹 ∈ dom ⇝ ) → (𝐹 ∈ dom ⇝ ↔ 𝐺 ∈ dom ⇝ ))
2826, 27mtbid 324 . . . 4 ((𝜑 ∧ ¬ 𝐹 ∈ dom ⇝ ) → ¬ 𝐺 ∈ dom ⇝ )
29 ndmfv 6942 . . . 4 𝐺 ∈ dom ⇝ → ( ⇝ ‘𝐺) = ∅)
3028, 29syl 17 . . 3 ((𝜑 ∧ ¬ 𝐹 ∈ dom ⇝ ) → ( ⇝ ‘𝐺) = ∅)
3125, 30eqtr4d 2778 . 2 ((𝜑 ∧ ¬ 𝐹 ∈ dom ⇝ ) → ( ⇝ ‘𝐹) = ( ⇝ ‘𝐺))
3223, 31pm2.61dan 813 1 (𝜑 → ( ⇝ ‘𝐹) = ( ⇝ ‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  c0 4339   class class class wbr 5148  dom cdm 5689  cfv 6563  cz 12611  cuz 12876  cli 15517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-sup 9480  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-seq 14040  df-exp 14100  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521
This theorem is referenced by:  climfveqmpt  45627  climfveqmpt3  45638
  Copyright terms: Public domain W3C validator