Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > climfveq | Structured version Visualization version GIF version |
Description: Two functions that are eventually equal to one another have the same limit. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
climfveq.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climfveq.2 | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
climfveq.3 | ⊢ (𝜑 → 𝐺 ∈ 𝑊) |
climfveq.4 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
climfveq.5 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (𝐺‘𝑘)) |
Ref | Expression |
---|---|
climfveq | ⊢ (𝜑 → ( ⇝ ‘𝐹) = ( ⇝ ‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climdm 15263 | . . . . 5 ⊢ (𝐹 ∈ dom ⇝ ↔ 𝐹 ⇝ ( ⇝ ‘𝐹)) | |
2 | 1 | biimpi 215 | . . . 4 ⊢ (𝐹 ∈ dom ⇝ → 𝐹 ⇝ ( ⇝ ‘𝐹)) |
3 | 2 | adantl 482 | . . 3 ⊢ ((𝜑 ∧ 𝐹 ∈ dom ⇝ ) → 𝐹 ⇝ ( ⇝ ‘𝐹)) |
4 | 3, 1 | sylibr 233 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐹 ∈ dom ⇝ ) → 𝐹 ∈ dom ⇝ ) |
5 | climfveq.1 | . . . . . . . 8 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
6 | climfveq.2 | . . . . . . . 8 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
7 | climfveq.3 | . . . . . . . 8 ⊢ (𝜑 → 𝐺 ∈ 𝑊) | |
8 | climfveq.4 | . . . . . . . 8 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
9 | climfveq.5 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (𝐺‘𝑘)) | |
10 | 5, 6, 7, 8, 9 | climeldmeq 43206 | . . . . . . 7 ⊢ (𝜑 → (𝐹 ∈ dom ⇝ ↔ 𝐺 ∈ dom ⇝ )) |
11 | 10 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐹 ∈ dom ⇝ ) → (𝐹 ∈ dom ⇝ ↔ 𝐺 ∈ dom ⇝ )) |
12 | 4, 11 | mpbid 231 | . . . . 5 ⊢ ((𝜑 ∧ 𝐹 ∈ dom ⇝ ) → 𝐺 ∈ dom ⇝ ) |
13 | climdm 15263 | . . . . 5 ⊢ (𝐺 ∈ dom ⇝ ↔ 𝐺 ⇝ ( ⇝ ‘𝐺)) | |
14 | 12, 13 | sylib 217 | . . . 4 ⊢ ((𝜑 ∧ 𝐹 ∈ dom ⇝ ) → 𝐺 ⇝ ( ⇝ ‘𝐺)) |
15 | 7 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝐹 ∈ dom ⇝ ) → 𝐺 ∈ 𝑊) |
16 | 6 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝐹 ∈ dom ⇝ ) → 𝐹 ∈ 𝑉) |
17 | 8 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝐹 ∈ dom ⇝ ) → 𝑀 ∈ ℤ) |
18 | 9 | eqcomd 2744 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (𝐹‘𝑘)) |
19 | 18 | adantlr 712 | . . . . 5 ⊢ (((𝜑 ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (𝐹‘𝑘)) |
20 | 5, 15, 16, 17, 19 | climeq 15276 | . . . 4 ⊢ ((𝜑 ∧ 𝐹 ∈ dom ⇝ ) → (𝐺 ⇝ ( ⇝ ‘𝐺) ↔ 𝐹 ⇝ ( ⇝ ‘𝐺))) |
21 | 14, 20 | mpbid 231 | . . 3 ⊢ ((𝜑 ∧ 𝐹 ∈ dom ⇝ ) → 𝐹 ⇝ ( ⇝ ‘𝐺)) |
22 | climuni 15261 | . . 3 ⊢ ((𝐹 ⇝ ( ⇝ ‘𝐹) ∧ 𝐹 ⇝ ( ⇝ ‘𝐺)) → ( ⇝ ‘𝐹) = ( ⇝ ‘𝐺)) | |
23 | 3, 21, 22 | syl2anc 584 | . 2 ⊢ ((𝜑 ∧ 𝐹 ∈ dom ⇝ ) → ( ⇝ ‘𝐹) = ( ⇝ ‘𝐺)) |
24 | ndmfv 6804 | . . . 4 ⊢ (¬ 𝐹 ∈ dom ⇝ → ( ⇝ ‘𝐹) = ∅) | |
25 | 24 | adantl 482 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐹 ∈ dom ⇝ ) → ( ⇝ ‘𝐹) = ∅) |
26 | simpr 485 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝐹 ∈ dom ⇝ ) → ¬ 𝐹 ∈ dom ⇝ ) | |
27 | 10 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝐹 ∈ dom ⇝ ) → (𝐹 ∈ dom ⇝ ↔ 𝐺 ∈ dom ⇝ )) |
28 | 26, 27 | mtbid 324 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐹 ∈ dom ⇝ ) → ¬ 𝐺 ∈ dom ⇝ ) |
29 | ndmfv 6804 | . . . 4 ⊢ (¬ 𝐺 ∈ dom ⇝ → ( ⇝ ‘𝐺) = ∅) | |
30 | 28, 29 | syl 17 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐹 ∈ dom ⇝ ) → ( ⇝ ‘𝐺) = ∅) |
31 | 25, 30 | eqtr4d 2781 | . 2 ⊢ ((𝜑 ∧ ¬ 𝐹 ∈ dom ⇝ ) → ( ⇝ ‘𝐹) = ( ⇝ ‘𝐺)) |
32 | 23, 31 | pm2.61dan 810 | 1 ⊢ (𝜑 → ( ⇝ ‘𝐹) = ( ⇝ ‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∅c0 4256 class class class wbr 5074 dom cdm 5589 ‘cfv 6433 ℤcz 12319 ℤ≥cuz 12582 ⇝ cli 15193 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-sup 9201 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-z 12320 df-uz 12583 df-rp 12731 df-seq 13722 df-exp 13783 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-clim 15197 |
This theorem is referenced by: climfveqmpt 43212 climfveqmpt3 43223 |
Copyright terms: Public domain | W3C validator |