Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  clim2c Structured version   Visualization version   GIF version

Theorem clim2c 14910
 Description: Express the predicate 𝐹 converges to 𝐴. (Contributed by NM, 24-Feb-2008.) (Revised by Mario Carneiro, 31-Jan-2014.)
Hypotheses
Ref Expression
clim2.1 𝑍 = (ℤ𝑀)
clim2.2 (𝜑𝑀 ∈ ℤ)
clim2.3 (𝜑𝐹𝑉)
clim2.4 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐵)
clim2c.5 (𝜑𝐴 ∈ ℂ)
clim2c.6 ((𝜑𝑘𝑍) → 𝐵 ∈ ℂ)
Assertion
Ref Expression
clim2c (𝜑 → (𝐹𝐴 ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(𝐵𝐴)) < 𝑥))
Distinct variable groups:   𝑗,𝑘,𝑥,𝐴   𝑗,𝐹,𝑘,𝑥   𝑗,𝑀   𝜑,𝑗,𝑘,𝑥   𝑗,𝑍,𝑘
Allowed substitution hints:   𝐵(𝑥,𝑗,𝑘)   𝑀(𝑥,𝑘)   𝑉(𝑥,𝑗,𝑘)   𝑍(𝑥)

Proof of Theorem clim2c
StepHypRef Expression
1 clim2c.5 . . 3 (𝜑𝐴 ∈ ℂ)
21biantrurd 536 . 2 (𝜑 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑥) ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑥))))
3 clim2.1 . . . . . . . 8 𝑍 = (ℤ𝑀)
43uztrn2 12301 . . . . . . 7 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
5 clim2c.6 . . . . . . . 8 ((𝜑𝑘𝑍) → 𝐵 ∈ ℂ)
65biantrurd 536 . . . . . . 7 ((𝜑𝑘𝑍) → ((abs‘(𝐵𝐴)) < 𝑥 ↔ (𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑥)))
74, 6sylan2 595 . . . . . 6 ((𝜑 ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ((abs‘(𝐵𝐴)) < 𝑥 ↔ (𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑥)))
87anassrs 471 . . . . 5 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((abs‘(𝐵𝐴)) < 𝑥 ↔ (𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑥)))
98ralbidva 3125 . . . 4 ((𝜑𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐵𝐴)) < 𝑥 ↔ ∀𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑥)))
109rexbidva 3220 . . 3 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(𝐵𝐴)) < 𝑥 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑥)))
1110ralbidv 3126 . 2 (𝜑 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(𝐵𝐴)) < 𝑥 ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑥)))
12 clim2.2 . . 3 (𝜑𝑀 ∈ ℤ)
13 clim2.3 . . 3 (𝜑𝐹𝑉)
14 clim2.4 . . 3 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐵)
153, 12, 13, 14clim2 14909 . 2 (𝜑 → (𝐹𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑥))))
162, 11, 153bitr4rd 315 1 (𝜑 → (𝐹𝐴 ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(𝐵𝐴)) < 𝑥))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2111  ∀wral 3070  ∃wrex 3071   class class class wbr 5032  ‘cfv 6335  (class class class)co 7150  ℂcc 10573   < clt 10713   − cmin 10908  ℤcz 12020  ℤ≥cuz 12282  ℝ+crp 12430  abscabs 14641   ⇝ cli 14889 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-cnex 10631  ax-resscn 10632  ax-pre-lttri 10649  ax-pre-lttrn 10650 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-op 4529  df-uni 4799  df-br 5033  df-opab 5095  df-mpt 5113  df-id 5430  df-po 5443  df-so 5444  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-ov 7153  df-er 8299  df-en 8528  df-dom 8529  df-sdom 8530  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-neg 10911  df-z 12021  df-uz 12283  df-clim 14893 This theorem is referenced by:  clim0c  14912  climconst  14948  rlimclim1  14950  2clim  14977  climcn1  14996  climcn2  14997  climsqz  15045  climsqz2  15046  climsup  15074  ulmclm  25081  itgulm  25102  climinf  42636
 Copyright terms: Public domain W3C validator