MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climi2 Structured version   Visualization version   GIF version

Theorem climi2 14958
Description: Convergence of a sequence of complex numbers. (Contributed by NM, 11-Jan-2007.) (Revised by Mario Carneiro, 31-Jan-2014.)
Hypotheses
Ref Expression
climi.1 𝑍 = (ℤ𝑀)
climi.2 (𝜑𝑀 ∈ ℤ)
climi.3 (𝜑𝐶 ∈ ℝ+)
climi.4 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐵)
climi.5 (𝜑𝐹𝐴)
Assertion
Ref Expression
climi2 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(𝐵𝐴)) < 𝐶)
Distinct variable groups:   𝑗,𝑘,𝐴   𝐶,𝑗,𝑘   𝑗,𝐹,𝑘   𝜑,𝑗,𝑘   𝑗,𝑍,𝑘   𝑗,𝑀
Allowed substitution hints:   𝐵(𝑗,𝑘)   𝑀(𝑘)

Proof of Theorem climi2
StepHypRef Expression
1 climi.1 . . 3 𝑍 = (ℤ𝑀)
2 climi.2 . . 3 (𝜑𝑀 ∈ ℤ)
3 climi.3 . . 3 (𝜑𝐶 ∈ ℝ+)
4 climi.4 . . 3 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐵)
5 climi.5 . . 3 (𝜑𝐹𝐴)
61, 2, 3, 4, 5climi 14957 . 2 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝐶))
7 simpr 488 . . . 4 ((𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝐶) → (abs‘(𝐵𝐴)) < 𝐶)
87ralimi 3075 . . 3 (∀𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝐶) → ∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐵𝐴)) < 𝐶)
98reximi 3157 . 2 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝐶) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(𝐵𝐴)) < 𝐶)
106, 9syl 17 1 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(𝐵𝐴)) < 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1542  wcel 2114  wral 3053  wrex 3054   class class class wbr 5030  cfv 6339  (class class class)co 7170  cc 10613   < clt 10753  cmin 10948  cz 12062  cuz 12324  +crp 12472  abscabs 14683  cli 14931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-cnex 10671  ax-resscn 10672  ax-pre-lttri 10689  ax-pre-lttrn 10690
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-op 4523  df-uni 4797  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5429  df-po 5442  df-so 5443  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-ov 7173  df-er 8320  df-en 8556  df-dom 8557  df-sdom 8558  df-pnf 10755  df-mnf 10756  df-xr 10757  df-ltxr 10758  df-le 10759  df-neg 10951  df-z 12063  df-uz 12325  df-clim 14935
This theorem is referenced by:  rlimclim  14993  climcn1  15039  climcn2  15040  climsqz  15088  climsqz2  15089  mertenslem2  15333  uniioombllem6  24340  ulmcau  25142  ulmdvlem3  25149  rrncmslem  35613  cvgdvgrat  41469  stoweidlem7  43090
  Copyright terms: Public domain W3C validator