| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > climi2 | Structured version Visualization version GIF version | ||
| Description: Convergence of a sequence of complex numbers. (Contributed by NM, 11-Jan-2007.) (Revised by Mario Carneiro, 31-Jan-2014.) |
| Ref | Expression |
|---|---|
| climi.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| climi.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| climi.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ+) |
| climi.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵) |
| climi.5 | ⊢ (𝜑 → 𝐹 ⇝ 𝐴) |
| Ref | Expression |
|---|---|
| climi2 | ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐵 − 𝐴)) < 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climi.1 | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 2 | climi.2 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 3 | climi.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ+) | |
| 4 | climi.4 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵) | |
| 5 | climi.5 | . . 3 ⊢ (𝜑 → 𝐹 ⇝ 𝐴) | |
| 6 | 1, 2, 3, 4, 5 | climi 15417 | . 2 ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝐶)) |
| 7 | simpr 484 | . . . 4 ⊢ ((𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝐶) → (abs‘(𝐵 − 𝐴)) < 𝐶) | |
| 8 | 7 | ralimi 3069 | . . 3 ⊢ (∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝐶) → ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐵 − 𝐴)) < 𝐶) |
| 9 | 8 | reximi 3070 | . 2 ⊢ (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝐶) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐵 − 𝐴)) < 𝐶) |
| 10 | 6, 9 | syl 17 | 1 ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐵 − 𝐴)) < 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 class class class wbr 5091 ‘cfv 6481 (class class class)co 7346 ℂcc 11004 < clt 11146 − cmin 11344 ℤcz 12468 ℤ≥cuz 12732 ℝ+crp 12890 abscabs 15141 ⇝ cli 15391 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-pre-lttri 11080 ax-pre-lttrn 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-po 5524 df-so 5525 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-neg 11347 df-z 12469 df-uz 12733 df-clim 15395 |
| This theorem is referenced by: rlimclim 15453 climcn1 15499 climcn2 15500 climsqz 15548 climsqz2 15549 mertenslem2 15792 uniioombllem6 25517 ulmcau 26332 ulmdvlem3 26339 rrncmslem 37878 cvgdvgrat 44352 stoweidlem7 46051 |
| Copyright terms: Public domain | W3C validator |