![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > climi2 | Structured version Visualization version GIF version |
Description: Convergence of a sequence of complex numbers. (Contributed by NM, 11-Jan-2007.) (Revised by Mario Carneiro, 31-Jan-2014.) |
Ref | Expression |
---|---|
climi.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climi.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
climi.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ+) |
climi.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵) |
climi.5 | ⊢ (𝜑 → 𝐹 ⇝ 𝐴) |
Ref | Expression |
---|---|
climi2 | ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐵 − 𝐴)) < 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climi.1 | . . 3 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | climi.2 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
3 | climi.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ+) | |
4 | climi.4 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵) | |
5 | climi.5 | . . 3 ⊢ (𝜑 → 𝐹 ⇝ 𝐴) | |
6 | 1, 2, 3, 4, 5 | climi 15542 | . 2 ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝐶)) |
7 | simpr 484 | . . . 4 ⊢ ((𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝐶) → (abs‘(𝐵 − 𝐴)) < 𝐶) | |
8 | 7 | ralimi 3080 | . . 3 ⊢ (∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝐶) → ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐵 − 𝐴)) < 𝐶) |
9 | 8 | reximi 3081 | . 2 ⊢ (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵 − 𝐴)) < 𝐶) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐵 − 𝐴)) < 𝐶) |
10 | 6, 9 | syl 17 | 1 ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐵 − 𝐴)) < 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1536 ∈ wcel 2105 ∀wral 3058 ∃wrex 3067 class class class wbr 5147 ‘cfv 6562 (class class class)co 7430 ℂcc 11150 < clt 11292 − cmin 11489 ℤcz 12610 ℤ≥cuz 12875 ℝ+crp 13031 abscabs 15269 ⇝ cli 15516 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-pre-lttri 11226 ax-pre-lttrn 11227 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-po 5596 df-so 5597 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-ov 7433 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-neg 11492 df-z 12611 df-uz 12876 df-clim 15520 |
This theorem is referenced by: rlimclim 15578 climcn1 15624 climcn2 15625 climsqz 15673 climsqz2 15674 mertenslem2 15917 uniioombllem6 25636 ulmcau 26452 ulmdvlem3 26459 rrncmslem 37818 cvgdvgrat 44308 stoweidlem7 45962 |
Copyright terms: Public domain | W3C validator |