MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addcn2 Structured version   Visualization version   GIF version

Theorem addcn2 15626
Description: Complex number addition is a continuous function. Part of Proposition 14-4.16 of [Gleason] p. 243. (We write out the definition directly because df-cn 23250 and df-cncf 24917 are not yet available to us. See addcn 24900 for the abbreviated version.) (Contributed by Mario Carneiro, 31-Jan-2014.)
Assertion
Ref Expression
addcn2 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢 + 𝑣) − (𝐵 + 𝐶))) < 𝐴))
Distinct variable groups:   𝑣,𝑢,𝑦,𝑧,𝐴   𝑢,𝐵,𝑣,𝑦,𝑧   𝑢,𝐶,𝑣,𝑦,𝑧

Proof of Theorem addcn2
StepHypRef Expression
1 rphalfcl 13059 . . 3 (𝐴 ∈ ℝ+ → (𝐴 / 2) ∈ ℝ+)
213ad2ant1 1132 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 / 2) ∈ ℝ+)
3 simprl 771 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → 𝑢 ∈ ℂ)
4 simpl2 1191 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → 𝐵 ∈ ℂ)
5 simprr 773 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → 𝑣 ∈ ℂ)
63, 4, 5pnpcan2d 11655 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((𝑢 + 𝑣) − (𝐵 + 𝑣)) = (𝑢𝐵))
76fveq2d 6910 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (abs‘((𝑢 + 𝑣) − (𝐵 + 𝑣))) = (abs‘(𝑢𝐵)))
87breq1d 5157 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘((𝑢 + 𝑣) − (𝐵 + 𝑣))) < (𝐴 / 2) ↔ (abs‘(𝑢𝐵)) < (𝐴 / 2)))
9 simpl3 1192 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → 𝐶 ∈ ℂ)
104, 5, 9pnpcand 11654 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((𝐵 + 𝑣) − (𝐵 + 𝐶)) = (𝑣𝐶))
1110fveq2d 6910 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (abs‘((𝐵 + 𝑣) − (𝐵 + 𝐶))) = (abs‘(𝑣𝐶)))
1211breq1d 5157 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘((𝐵 + 𝑣) − (𝐵 + 𝐶))) < (𝐴 / 2) ↔ (abs‘(𝑣𝐶)) < (𝐴 / 2)))
138, 12anbi12d 632 . . . 4 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (((abs‘((𝑢 + 𝑣) − (𝐵 + 𝑣))) < (𝐴 / 2) ∧ (abs‘((𝐵 + 𝑣) − (𝐵 + 𝐶))) < (𝐴 / 2)) ↔ ((abs‘(𝑢𝐵)) < (𝐴 / 2) ∧ (abs‘(𝑣𝐶)) < (𝐴 / 2))))
14 addcl 11234 . . . . . 6 ((𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑢 + 𝑣) ∈ ℂ)
1514adantl 481 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝑢 + 𝑣) ∈ ℂ)
164, 9addcld 11277 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝐵 + 𝐶) ∈ ℂ)
174, 5addcld 11277 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝐵 + 𝑣) ∈ ℂ)
18 simpl1 1190 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → 𝐴 ∈ ℝ+)
1918rpred 13074 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → 𝐴 ∈ ℝ)
20 abs3lem 15373 . . . . 5 ((((𝑢 + 𝑣) ∈ ℂ ∧ (𝐵 + 𝐶) ∈ ℂ) ∧ ((𝐵 + 𝑣) ∈ ℂ ∧ 𝐴 ∈ ℝ)) → (((abs‘((𝑢 + 𝑣) − (𝐵 + 𝑣))) < (𝐴 / 2) ∧ (abs‘((𝐵 + 𝑣) − (𝐵 + 𝐶))) < (𝐴 / 2)) → (abs‘((𝑢 + 𝑣) − (𝐵 + 𝐶))) < 𝐴))
2115, 16, 17, 19, 20syl22anc 839 . . . 4 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (((abs‘((𝑢 + 𝑣) − (𝐵 + 𝑣))) < (𝐴 / 2) ∧ (abs‘((𝐵 + 𝑣) − (𝐵 + 𝐶))) < (𝐴 / 2)) → (abs‘((𝑢 + 𝑣) − (𝐵 + 𝐶))) < 𝐴))
2213, 21sylbird 260 . . 3 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (((abs‘(𝑢𝐵)) < (𝐴 / 2) ∧ (abs‘(𝑣𝐶)) < (𝐴 / 2)) → (abs‘((𝑢 + 𝑣) − (𝐵 + 𝐶))) < 𝐴))
2322ralrimivva 3199 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < (𝐴 / 2) ∧ (abs‘(𝑣𝐶)) < (𝐴 / 2)) → (abs‘((𝑢 + 𝑣) − (𝐵 + 𝐶))) < 𝐴))
24 breq2 5151 . . . . . 6 (𝑦 = (𝐴 / 2) → ((abs‘(𝑢𝐵)) < 𝑦 ↔ (abs‘(𝑢𝐵)) < (𝐴 / 2)))
2524anbi1d 631 . . . . 5 (𝑦 = (𝐴 / 2) → (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑣𝐶)) < 𝑧) ↔ ((abs‘(𝑢𝐵)) < (𝐴 / 2) ∧ (abs‘(𝑣𝐶)) < 𝑧)))
2625imbi1d 341 . . . 4 (𝑦 = (𝐴 / 2) → ((((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢 + 𝑣) − (𝐵 + 𝐶))) < 𝐴) ↔ (((abs‘(𝑢𝐵)) < (𝐴 / 2) ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢 + 𝑣) − (𝐵 + 𝐶))) < 𝐴)))
27262ralbidv 3218 . . 3 (𝑦 = (𝐴 / 2) → (∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢 + 𝑣) − (𝐵 + 𝐶))) < 𝐴) ↔ ∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < (𝐴 / 2) ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢 + 𝑣) − (𝐵 + 𝐶))) < 𝐴)))
28 breq2 5151 . . . . . 6 (𝑧 = (𝐴 / 2) → ((abs‘(𝑣𝐶)) < 𝑧 ↔ (abs‘(𝑣𝐶)) < (𝐴 / 2)))
2928anbi2d 630 . . . . 5 (𝑧 = (𝐴 / 2) → (((abs‘(𝑢𝐵)) < (𝐴 / 2) ∧ (abs‘(𝑣𝐶)) < 𝑧) ↔ ((abs‘(𝑢𝐵)) < (𝐴 / 2) ∧ (abs‘(𝑣𝐶)) < (𝐴 / 2))))
3029imbi1d 341 . . . 4 (𝑧 = (𝐴 / 2) → ((((abs‘(𝑢𝐵)) < (𝐴 / 2) ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢 + 𝑣) − (𝐵 + 𝐶))) < 𝐴) ↔ (((abs‘(𝑢𝐵)) < (𝐴 / 2) ∧ (abs‘(𝑣𝐶)) < (𝐴 / 2)) → (abs‘((𝑢 + 𝑣) − (𝐵 + 𝐶))) < 𝐴)))
31302ralbidv 3218 . . 3 (𝑧 = (𝐴 / 2) → (∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < (𝐴 / 2) ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢 + 𝑣) − (𝐵 + 𝐶))) < 𝐴) ↔ ∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < (𝐴 / 2) ∧ (abs‘(𝑣𝐶)) < (𝐴 / 2)) → (abs‘((𝑢 + 𝑣) − (𝐵 + 𝐶))) < 𝐴)))
3227, 31rspc2ev 3634 . 2 (((𝐴 / 2) ∈ ℝ+ ∧ (𝐴 / 2) ∈ ℝ+ ∧ ∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < (𝐴 / 2) ∧ (abs‘(𝑣𝐶)) < (𝐴 / 2)) → (abs‘((𝑢 + 𝑣) − (𝐵 + 𝐶))) < 𝐴)) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢 + 𝑣) − (𝐵 + 𝐶))) < 𝐴))
332, 2, 23, 32syl3anc 1370 1 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢 + 𝑣) − (𝐵 + 𝐶))) < 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1536  wcel 2105  wral 3058  wrex 3067   class class class wbr 5147  cfv 6562  (class class class)co 7430  cc 11150  cr 11151   + caddc 11155   < clt 11292  cmin 11489   / cdiv 11917  2c2 12318  +crp 13031  abscabs 15269
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-sup 9479  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-n0 12524  df-z 12611  df-uz 12876  df-rp 13032  df-seq 14039  df-exp 14099  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271
This theorem is referenced by:  subcn2  15627  climadd  15664  rlimadd  15675  addcn  24900
  Copyright terms: Public domain W3C validator