MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addcn2 Structured version   Visualization version   GIF version

Theorem addcn2 15538
Description: Complex number addition is a continuous function. Part of Proposition 14-4.16 of [Gleason] p. 243. (We write out the definition directly because df-cn 22731 and df-cncf 24394 are not yet available to us. See addcn 24381 for the abbreviated version.) (Contributed by Mario Carneiro, 31-Jan-2014.)
Assertion
Ref Expression
addcn2 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢 + 𝑣) − (𝐵 + 𝐶))) < 𝐴))
Distinct variable groups:   𝑣,𝑢,𝑦,𝑧,𝐴   𝑢,𝐵,𝑣,𝑦,𝑧   𝑢,𝐶,𝑣,𝑦,𝑧

Proof of Theorem addcn2
StepHypRef Expression
1 rphalfcl 13001 . . 3 (𝐴 ∈ ℝ+ → (𝐴 / 2) ∈ ℝ+)
213ad2ant1 1134 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 / 2) ∈ ℝ+)
3 simprl 770 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → 𝑢 ∈ ℂ)
4 simpl2 1193 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → 𝐵 ∈ ℂ)
5 simprr 772 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → 𝑣 ∈ ℂ)
63, 4, 5pnpcan2d 11609 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((𝑢 + 𝑣) − (𝐵 + 𝑣)) = (𝑢𝐵))
76fveq2d 6896 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (abs‘((𝑢 + 𝑣) − (𝐵 + 𝑣))) = (abs‘(𝑢𝐵)))
87breq1d 5159 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘((𝑢 + 𝑣) − (𝐵 + 𝑣))) < (𝐴 / 2) ↔ (abs‘(𝑢𝐵)) < (𝐴 / 2)))
9 simpl3 1194 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → 𝐶 ∈ ℂ)
104, 5, 9pnpcand 11608 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((𝐵 + 𝑣) − (𝐵 + 𝐶)) = (𝑣𝐶))
1110fveq2d 6896 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (abs‘((𝐵 + 𝑣) − (𝐵 + 𝐶))) = (abs‘(𝑣𝐶)))
1211breq1d 5159 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘((𝐵 + 𝑣) − (𝐵 + 𝐶))) < (𝐴 / 2) ↔ (abs‘(𝑣𝐶)) < (𝐴 / 2)))
138, 12anbi12d 632 . . . 4 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (((abs‘((𝑢 + 𝑣) − (𝐵 + 𝑣))) < (𝐴 / 2) ∧ (abs‘((𝐵 + 𝑣) − (𝐵 + 𝐶))) < (𝐴 / 2)) ↔ ((abs‘(𝑢𝐵)) < (𝐴 / 2) ∧ (abs‘(𝑣𝐶)) < (𝐴 / 2))))
14 addcl 11192 . . . . . 6 ((𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑢 + 𝑣) ∈ ℂ)
1514adantl 483 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝑢 + 𝑣) ∈ ℂ)
164, 9addcld 11233 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝐵 + 𝐶) ∈ ℂ)
174, 5addcld 11233 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝐵 + 𝑣) ∈ ℂ)
18 simpl1 1192 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → 𝐴 ∈ ℝ+)
1918rpred 13016 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → 𝐴 ∈ ℝ)
20 abs3lem 15285 . . . . 5 ((((𝑢 + 𝑣) ∈ ℂ ∧ (𝐵 + 𝐶) ∈ ℂ) ∧ ((𝐵 + 𝑣) ∈ ℂ ∧ 𝐴 ∈ ℝ)) → (((abs‘((𝑢 + 𝑣) − (𝐵 + 𝑣))) < (𝐴 / 2) ∧ (abs‘((𝐵 + 𝑣) − (𝐵 + 𝐶))) < (𝐴 / 2)) → (abs‘((𝑢 + 𝑣) − (𝐵 + 𝐶))) < 𝐴))
2115, 16, 17, 19, 20syl22anc 838 . . . 4 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (((abs‘((𝑢 + 𝑣) − (𝐵 + 𝑣))) < (𝐴 / 2) ∧ (abs‘((𝐵 + 𝑣) − (𝐵 + 𝐶))) < (𝐴 / 2)) → (abs‘((𝑢 + 𝑣) − (𝐵 + 𝐶))) < 𝐴))
2213, 21sylbird 260 . . 3 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (((abs‘(𝑢𝐵)) < (𝐴 / 2) ∧ (abs‘(𝑣𝐶)) < (𝐴 / 2)) → (abs‘((𝑢 + 𝑣) − (𝐵 + 𝐶))) < 𝐴))
2322ralrimivva 3201 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < (𝐴 / 2) ∧ (abs‘(𝑣𝐶)) < (𝐴 / 2)) → (abs‘((𝑢 + 𝑣) − (𝐵 + 𝐶))) < 𝐴))
24 breq2 5153 . . . . . 6 (𝑦 = (𝐴 / 2) → ((abs‘(𝑢𝐵)) < 𝑦 ↔ (abs‘(𝑢𝐵)) < (𝐴 / 2)))
2524anbi1d 631 . . . . 5 (𝑦 = (𝐴 / 2) → (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑣𝐶)) < 𝑧) ↔ ((abs‘(𝑢𝐵)) < (𝐴 / 2) ∧ (abs‘(𝑣𝐶)) < 𝑧)))
2625imbi1d 342 . . . 4 (𝑦 = (𝐴 / 2) → ((((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢 + 𝑣) − (𝐵 + 𝐶))) < 𝐴) ↔ (((abs‘(𝑢𝐵)) < (𝐴 / 2) ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢 + 𝑣) − (𝐵 + 𝐶))) < 𝐴)))
27262ralbidv 3219 . . 3 (𝑦 = (𝐴 / 2) → (∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢 + 𝑣) − (𝐵 + 𝐶))) < 𝐴) ↔ ∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < (𝐴 / 2) ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢 + 𝑣) − (𝐵 + 𝐶))) < 𝐴)))
28 breq2 5153 . . . . . 6 (𝑧 = (𝐴 / 2) → ((abs‘(𝑣𝐶)) < 𝑧 ↔ (abs‘(𝑣𝐶)) < (𝐴 / 2)))
2928anbi2d 630 . . . . 5 (𝑧 = (𝐴 / 2) → (((abs‘(𝑢𝐵)) < (𝐴 / 2) ∧ (abs‘(𝑣𝐶)) < 𝑧) ↔ ((abs‘(𝑢𝐵)) < (𝐴 / 2) ∧ (abs‘(𝑣𝐶)) < (𝐴 / 2))))
3029imbi1d 342 . . . 4 (𝑧 = (𝐴 / 2) → ((((abs‘(𝑢𝐵)) < (𝐴 / 2) ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢 + 𝑣) − (𝐵 + 𝐶))) < 𝐴) ↔ (((abs‘(𝑢𝐵)) < (𝐴 / 2) ∧ (abs‘(𝑣𝐶)) < (𝐴 / 2)) → (abs‘((𝑢 + 𝑣) − (𝐵 + 𝐶))) < 𝐴)))
31302ralbidv 3219 . . 3 (𝑧 = (𝐴 / 2) → (∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < (𝐴 / 2) ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢 + 𝑣) − (𝐵 + 𝐶))) < 𝐴) ↔ ∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < (𝐴 / 2) ∧ (abs‘(𝑣𝐶)) < (𝐴 / 2)) → (abs‘((𝑢 + 𝑣) − (𝐵 + 𝐶))) < 𝐴)))
3227, 31rspc2ev 3625 . 2 (((𝐴 / 2) ∈ ℝ+ ∧ (𝐴 / 2) ∈ ℝ+ ∧ ∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < (𝐴 / 2) ∧ (abs‘(𝑣𝐶)) < (𝐴 / 2)) → (abs‘((𝑢 + 𝑣) − (𝐵 + 𝐶))) < 𝐴)) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢 + 𝑣) − (𝐵 + 𝐶))) < 𝐴))
332, 2, 23, 32syl3anc 1372 1 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢 + 𝑣) − (𝐵 + 𝐶))) < 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088   = wceq 1542  wcel 2107  wral 3062  wrex 3071   class class class wbr 5149  cfv 6544  (class class class)co 7409  cc 11108  cr 11109   + caddc 11113   < clt 11248  cmin 11444   / cdiv 11871  2c2 12267  +crp 12974  abscabs 15181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187  ax-pre-sup 11188
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-sup 9437  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-div 11872  df-nn 12213  df-2 12275  df-3 12276  df-n0 12473  df-z 12559  df-uz 12823  df-rp 12975  df-seq 13967  df-exp 14028  df-cj 15046  df-re 15047  df-im 15048  df-sqrt 15182  df-abs 15183
This theorem is referenced by:  subcn2  15539  climadd  15576  rlimadd  15587  rlimaddOLD  15588  addcn  24381
  Copyright terms: Public domain W3C validator