Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > climmul | Structured version Visualization version GIF version |
Description: Limit of the product of two converging sequences. Proposition 12-2.1(c) of [Gleason] p. 168. (Contributed by NM, 27-Dec-2005.) (Proof shortened by Mario Carneiro, 1-Feb-2014.) |
Ref | Expression |
---|---|
climadd.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climadd.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
climadd.4 | ⊢ (𝜑 → 𝐹 ⇝ 𝐴) |
climadd.6 | ⊢ (𝜑 → 𝐻 ∈ 𝑋) |
climadd.7 | ⊢ (𝜑 → 𝐺 ⇝ 𝐵) |
climadd.8 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
climadd.9 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℂ) |
climmul.h | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = ((𝐹‘𝑘) · (𝐺‘𝑘))) |
Ref | Expression |
---|---|
climmul | ⊢ (𝜑 → 𝐻 ⇝ (𝐴 · 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climadd.1 | . 2 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | climadd.2 | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
3 | climadd.4 | . . 3 ⊢ (𝜑 → 𝐹 ⇝ 𝐴) | |
4 | climcl 15208 | . . 3 ⊢ (𝐹 ⇝ 𝐴 → 𝐴 ∈ ℂ) | |
5 | 3, 4 | syl 17 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
6 | climadd.7 | . . 3 ⊢ (𝜑 → 𝐺 ⇝ 𝐵) | |
7 | climcl 15208 | . . 3 ⊢ (𝐺 ⇝ 𝐵 → 𝐵 ∈ ℂ) | |
8 | 6, 7 | syl 17 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
9 | mulcl 10955 | . . 3 ⊢ ((𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑢 · 𝑣) ∈ ℂ) | |
10 | 9 | adantl 482 | . 2 ⊢ ((𝜑 ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝑢 · 𝑣) ∈ ℂ) |
11 | climadd.6 | . 2 ⊢ (𝜑 → 𝐻 ∈ 𝑋) | |
12 | simpr 485 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+) | |
13 | 5 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝐴 ∈ ℂ) |
14 | 8 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝐵 ∈ ℂ) |
15 | mulcn2 15305 | . . 3 ⊢ ((𝑥 ∈ ℝ+ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ∃𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢 − 𝐴)) < 𝑦 ∧ (abs‘(𝑣 − 𝐵)) < 𝑧) → (abs‘((𝑢 · 𝑣) − (𝐴 · 𝐵))) < 𝑥)) | |
16 | 12, 13, 14, 15 | syl3anc 1370 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢 − 𝐴)) < 𝑦 ∧ (abs‘(𝑣 − 𝐵)) < 𝑧) → (abs‘((𝑢 · 𝑣) − (𝐴 · 𝐵))) < 𝑥)) |
17 | climadd.8 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) | |
18 | climadd.9 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℂ) | |
19 | climmul.h | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = ((𝐹‘𝑘) · (𝐺‘𝑘))) | |
20 | 1, 2, 5, 8, 10, 3, 6, 11, 16, 17, 18, 19 | climcn2 15302 | 1 ⊢ (𝜑 → 𝐻 ⇝ (𝐴 · 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ∃wrex 3065 class class class wbr 5074 ‘cfv 6433 (class class class)co 7275 ℂcc 10869 · cmul 10876 < clt 11009 − cmin 11205 ℤcz 12319 ℤ≥cuz 12582 ℝ+crp 12730 abscabs 14945 ⇝ cli 15193 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-sup 9201 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-z 12320 df-uz 12583 df-rp 12731 df-seq 13722 df-exp 13783 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-clim 15197 |
This theorem is referenced by: climmulc2 15346 ntrivcvgmullem 15613 iprodmul 15713 mbfmullem2 24889 basellem7 26236 basellem9 26238 faclim 33712 faclim2 33714 climmulf 43145 |
Copyright terms: Public domain | W3C validator |