| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > climmul | Structured version Visualization version GIF version | ||
| Description: Limit of the product of two converging sequences. Proposition 12-2.1(c) of [Gleason] p. 168. (Contributed by NM, 27-Dec-2005.) (Proof shortened by Mario Carneiro, 1-Feb-2014.) |
| Ref | Expression |
|---|---|
| climadd.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| climadd.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| climadd.4 | ⊢ (𝜑 → 𝐹 ⇝ 𝐴) |
| climadd.6 | ⊢ (𝜑 → 𝐻 ∈ 𝑋) |
| climadd.7 | ⊢ (𝜑 → 𝐺 ⇝ 𝐵) |
| climadd.8 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
| climadd.9 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℂ) |
| climmul.h | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = ((𝐹‘𝑘) · (𝐺‘𝑘))) |
| Ref | Expression |
|---|---|
| climmul | ⊢ (𝜑 → 𝐻 ⇝ (𝐴 · 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climadd.1 | . 2 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 2 | climadd.2 | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 3 | climadd.4 | . . 3 ⊢ (𝜑 → 𝐹 ⇝ 𝐴) | |
| 4 | climcl 15408 | . . 3 ⊢ (𝐹 ⇝ 𝐴 → 𝐴 ∈ ℂ) | |
| 5 | 3, 4 | syl 17 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 6 | climadd.7 | . . 3 ⊢ (𝜑 → 𝐺 ⇝ 𝐵) | |
| 7 | climcl 15408 | . . 3 ⊢ (𝐺 ⇝ 𝐵 → 𝐵 ∈ ℂ) | |
| 8 | 6, 7 | syl 17 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| 9 | mulcl 11097 | . . 3 ⊢ ((𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑢 · 𝑣) ∈ ℂ) | |
| 10 | 9 | adantl 481 | . 2 ⊢ ((𝜑 ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝑢 · 𝑣) ∈ ℂ) |
| 11 | climadd.6 | . 2 ⊢ (𝜑 → 𝐻 ∈ 𝑋) | |
| 12 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+) | |
| 13 | 5 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝐴 ∈ ℂ) |
| 14 | 8 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝐵 ∈ ℂ) |
| 15 | mulcn2 15505 | . . 3 ⊢ ((𝑥 ∈ ℝ+ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ∃𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢 − 𝐴)) < 𝑦 ∧ (abs‘(𝑣 − 𝐵)) < 𝑧) → (abs‘((𝑢 · 𝑣) − (𝐴 · 𝐵))) < 𝑥)) | |
| 16 | 12, 13, 14, 15 | syl3anc 1373 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢 − 𝐴)) < 𝑦 ∧ (abs‘(𝑣 − 𝐵)) < 𝑧) → (abs‘((𝑢 · 𝑣) − (𝐴 · 𝐵))) < 𝑥)) |
| 17 | climadd.8 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) | |
| 18 | climadd.9 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℂ) | |
| 19 | climmul.h | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = ((𝐹‘𝑘) · (𝐺‘𝑘))) | |
| 20 | 1, 2, 5, 8, 10, 3, 6, 11, 16, 17, 18, 19 | climcn2 15502 | 1 ⊢ (𝜑 → 𝐻 ⇝ (𝐴 · 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3048 ∃wrex 3057 class class class wbr 5093 ‘cfv 6486 (class class class)co 7352 ℂcc 11011 · cmul 11018 < clt 11153 − cmin 11351 ℤcz 12475 ℤ≥cuz 12738 ℝ+crp 12892 abscabs 15143 ⇝ cli 15393 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-pre-sup 11091 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-sup 9333 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-3 12196 df-n0 12389 df-z 12476 df-uz 12739 df-rp 12893 df-seq 13911 df-exp 13971 df-cj 15008 df-re 15009 df-im 15010 df-sqrt 15144 df-abs 15145 df-clim 15397 |
| This theorem is referenced by: climmulc2 15546 ntrivcvgmullem 15810 iprodmul 15912 mbfmullem2 25653 basellem7 27025 basellem9 27027 faclim 35811 faclim2 35813 climmulf 45728 |
| Copyright terms: Public domain | W3C validator |